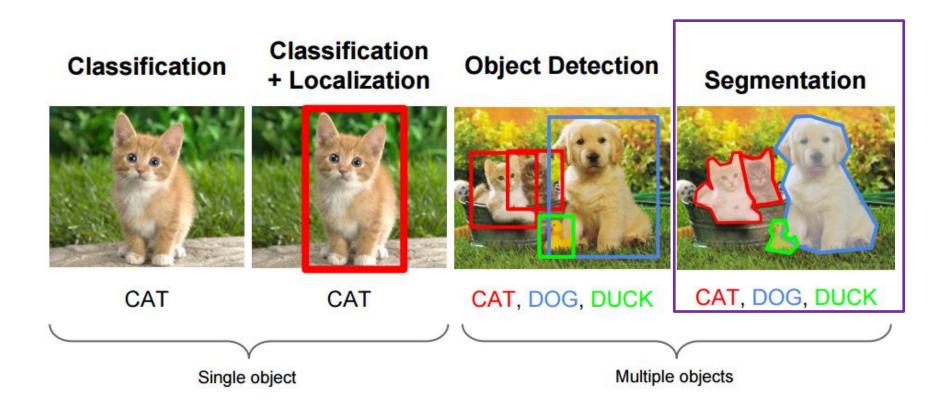
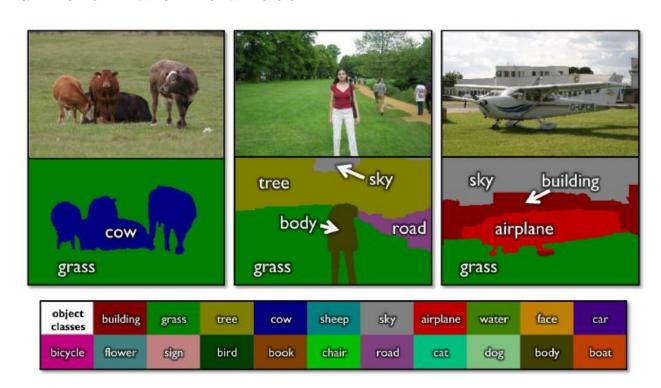
SEGMENTATION

HYUNG IL KOO

Computer Vision Tasks

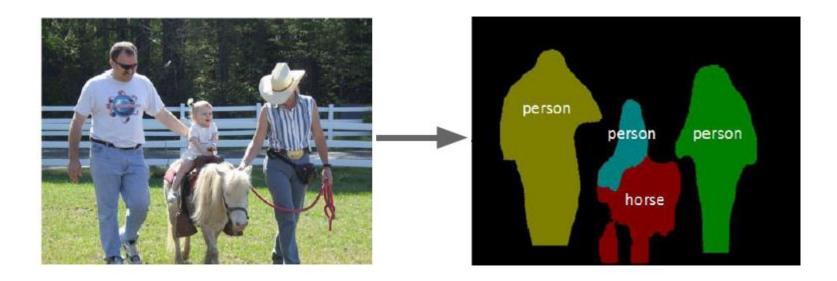


- Label every pixel
- Don't differentiate instances

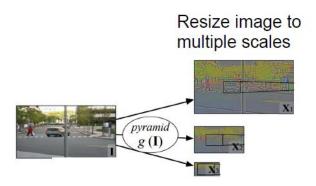


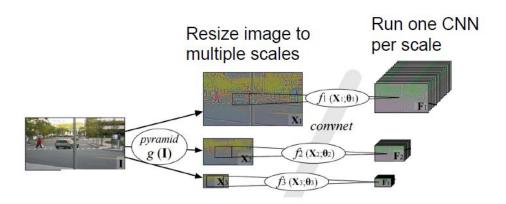
Instance Segmentation

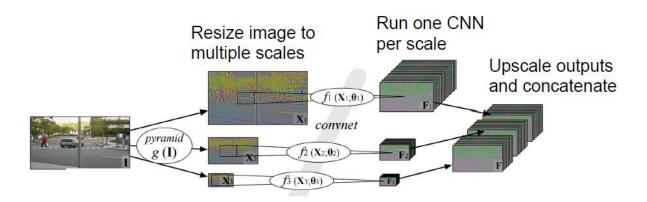
• Detect instances, give category, label pixels

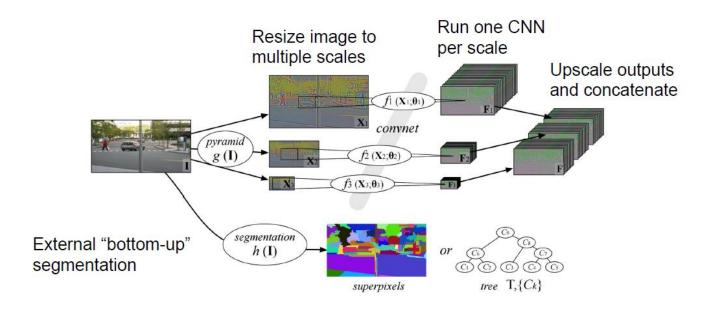


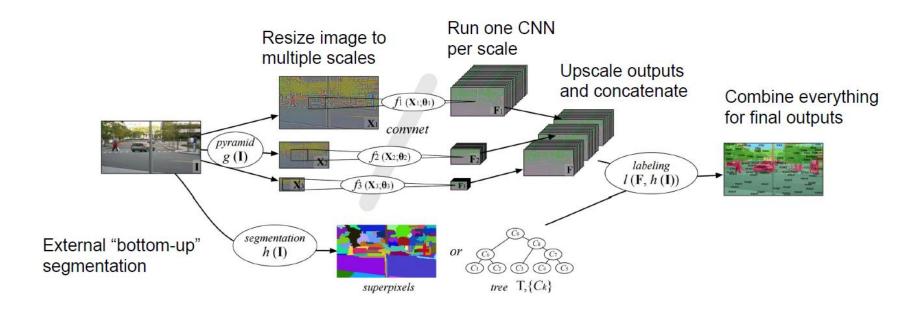
LEARNING HIERARCHICAL FEATURES FOR SCENE LABELING





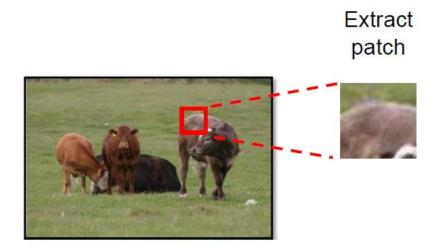


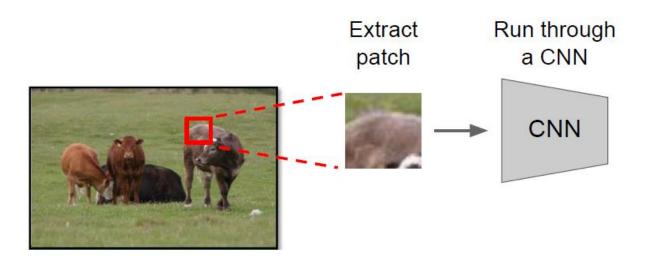


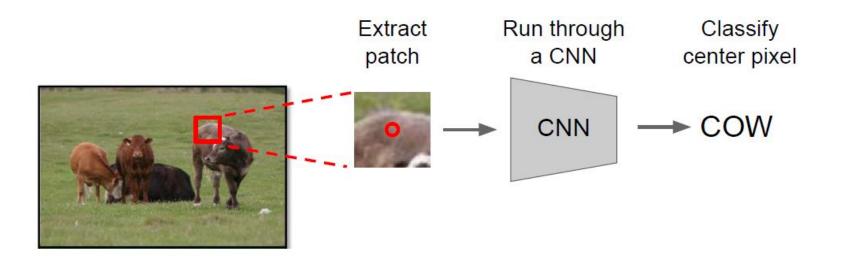


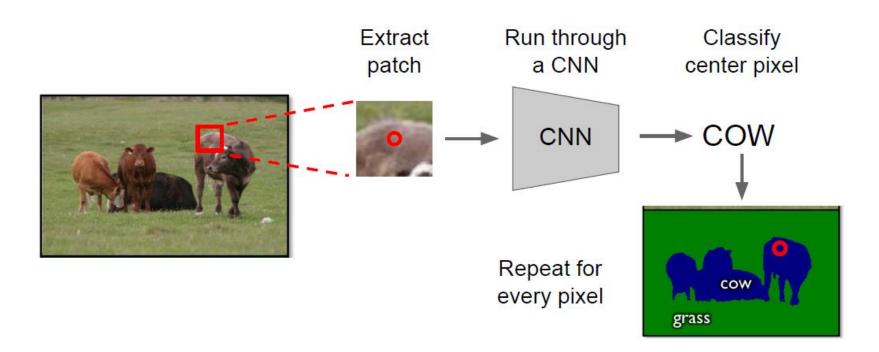
• Building/road/sky/object/grass/water/tree

PIXEL-WISE CLASSIFICATION







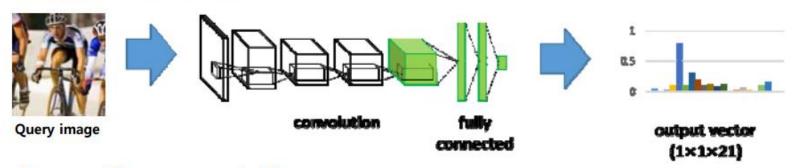


ENCODER-DECODER ARCHITECTURE

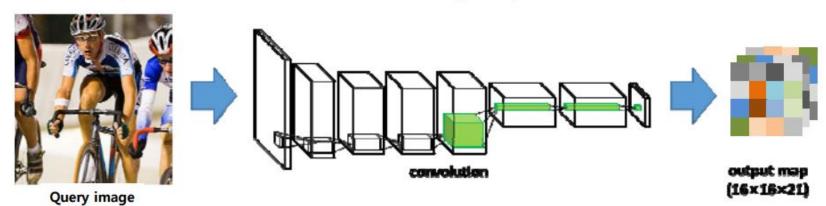
FULLY CONNECTED LAYERS AS CONVOLUTION LAYERS

FC layer as Conv layer

Image classification

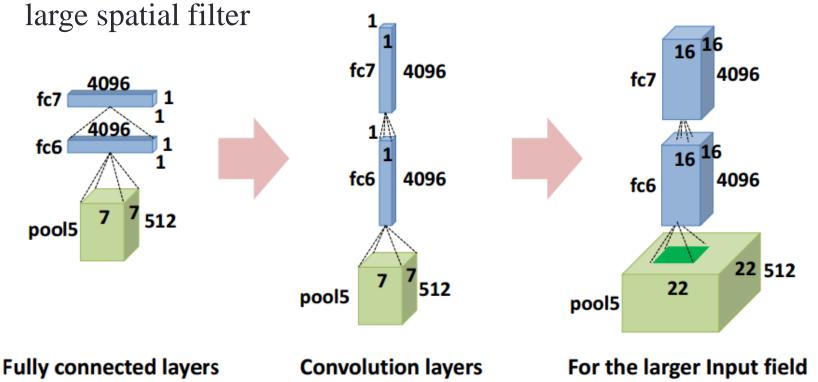


- Semantic segmentation
 - Given an input image, obtain pixel-wise segmentation mask using a deep Convolutional Neural Network (CNN)



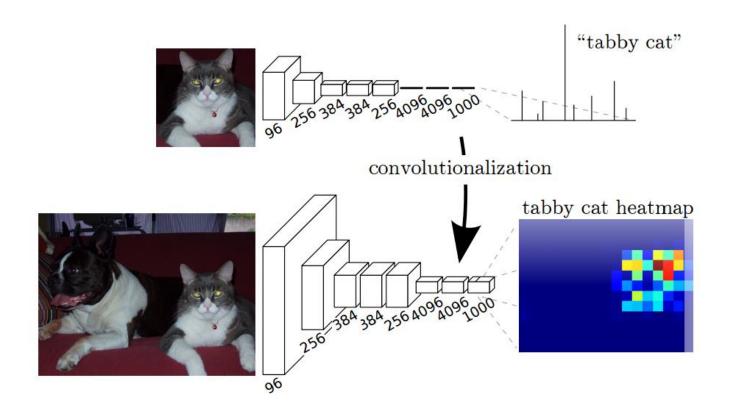
FC layer as Conv layer

• Each fully connected layer is interpreted as a convolution with a

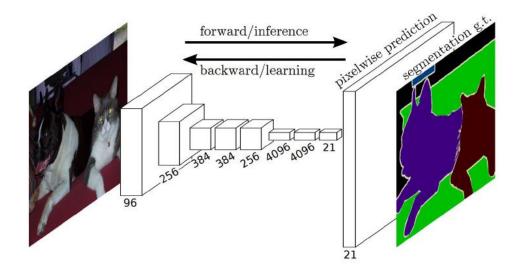


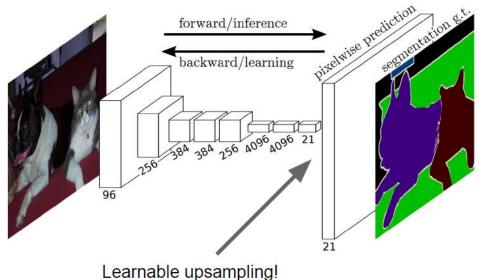
FC layer as Conv layer

• Transforming fully connected layers into convolution layers enables a classification net to output a heatmap

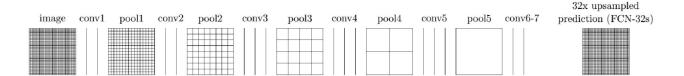


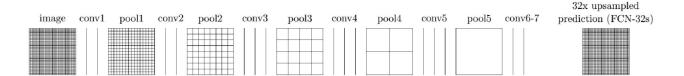
SEMANTIC SEGMENTATION WITH UPSAMPLING

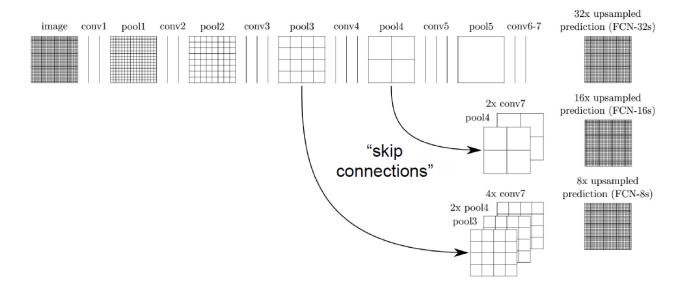


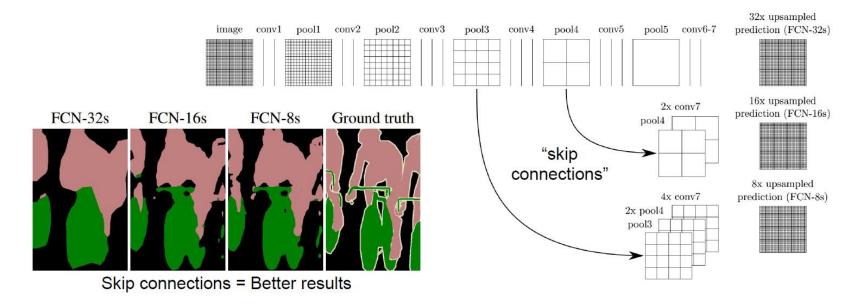


Learnable appartipling:



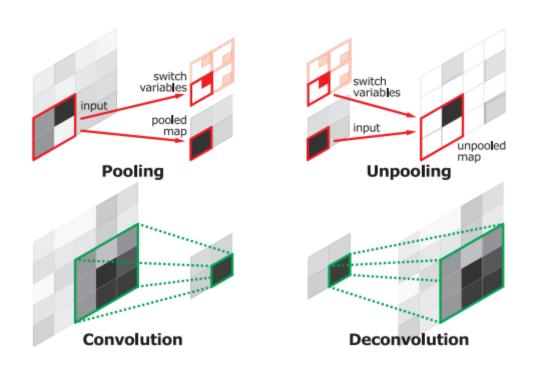






LEARNING DECONVOLUTION NETWORK FOR SEMANTIC SEGMENTATION

Illustration of deconvolution and unpooling operations.



Overall architecture

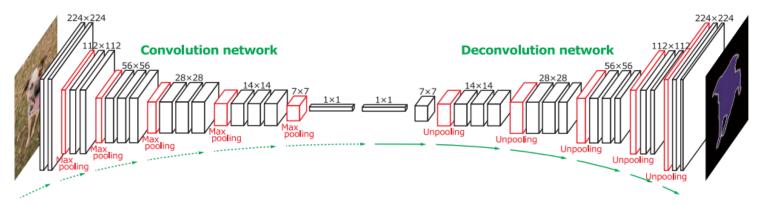


Figure 2. Overall architecture of the proposed network. On top of the convolution network based on VGG 16-layer net, we put a multilayer deconvolution network to generate the accurate segmentation map of an input proposal. Given a feature representation obtained from the convolution network, dense pixel-wise class prediction map is constructed through multiple series of unpooling, deconvolution and rectification operations.

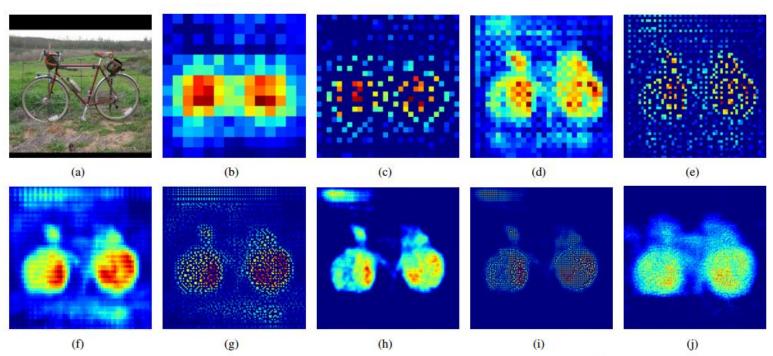


Figure 4. Visualization of activations in our deconvolution network. The activation maps from top left to bottom right correspond to the output maps from lower to higher layers in the deconvolution network. We select the most representative activation in each layer for effective visualization. The image in (a) is an input, and the rest are the outputs from (b) the last 14×14 deconvolutional layer, (c) the 28×28 unpooling layer, (d) the last 28×28 deconvolutional layer, (e) the 56×56 unpooling layer, (f) the last 56×56 deconvolutional layer, (g) the 112×112 unpooling layer, (h) the last 112×112 deconvolutional layer, (i) the 224×224 unpooling layer and (j) the last 224×224 deconvolutional layer. The finer details of the object are revealed, as the features are forward-propagated through the layers in the deconvolution network. Note that noisy activations from background are suppressed through propagation while the activations closely related to the target classes are amplified. It shows that the learned filters in higher deconvolutional layers tend to capture class-specific shape information.

Noh. et al. "Learning Deconvolution Network for Semantic Segmentation," ICCV 2015

Semantic segmentation as an instance-wise segmentation problem

- The proposed network is trained to perform semantic segmentation for individual instances.
 - Given an input image, we first generate a sufficient number of candidate proposals, and apply the trained network to obtain semantic segmentation maps of individual proposals. Then we aggregate the outputs of all proposals to produce semantic segmentation on a whole image.

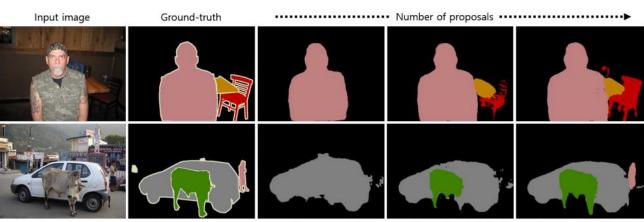
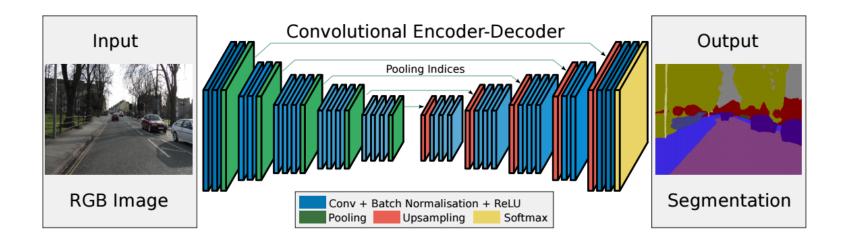


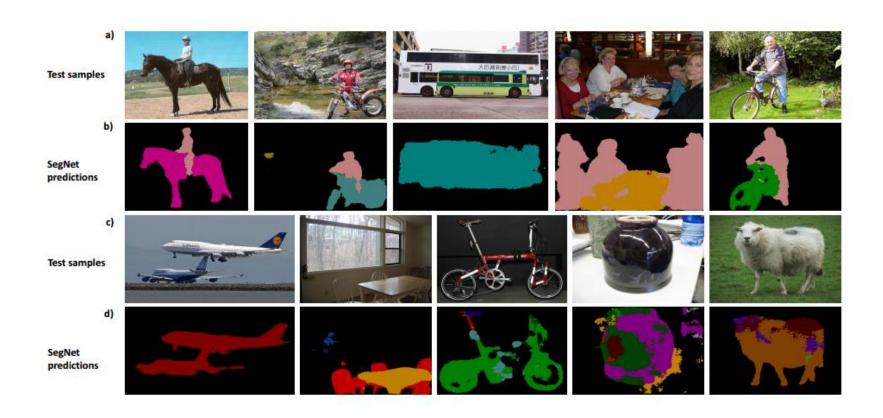
Figure 6. Benefit of instance-wise prediction. We aggregate the proposals in a decreasing order of their sizes. The algorithm identifies finer object structures through iterations by handling multi-scale objects effectively.

SEGNET: A DEEP CONVOLUTIONAL ENCODER-DECODER ARCHITECTURE FOR IMAGE SEGMENTATION

Encoder/Decoder

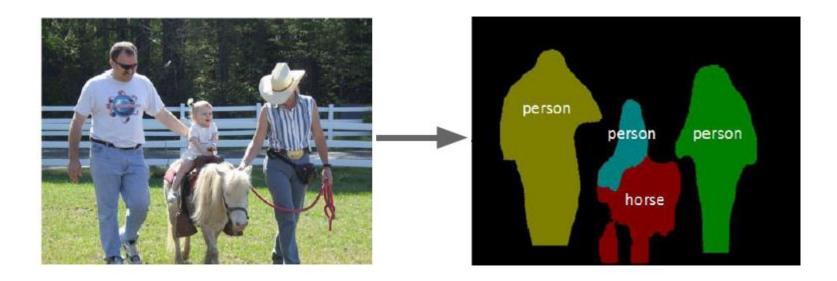


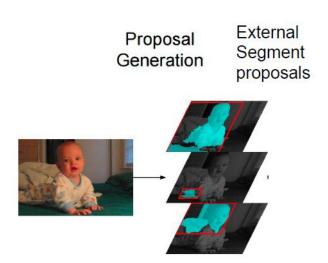
Results

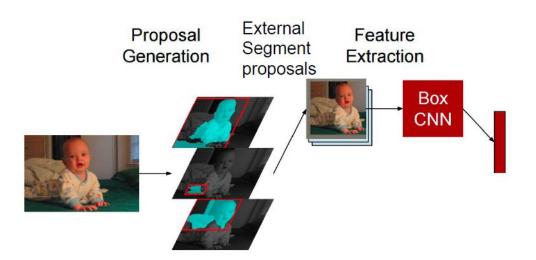


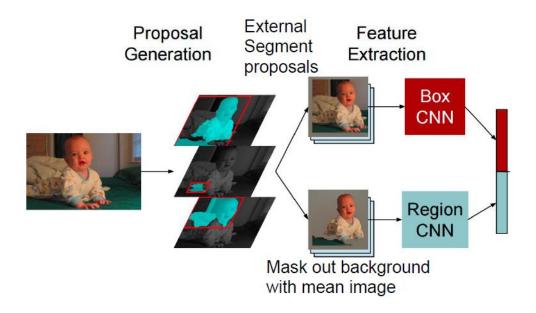
INSTANCE SEGMENTATION

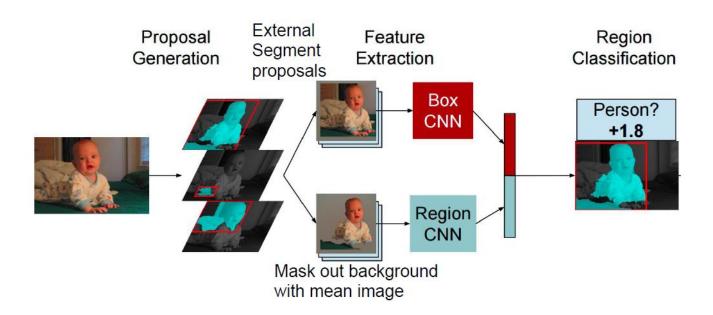
• Detect instances, give category, label pixels

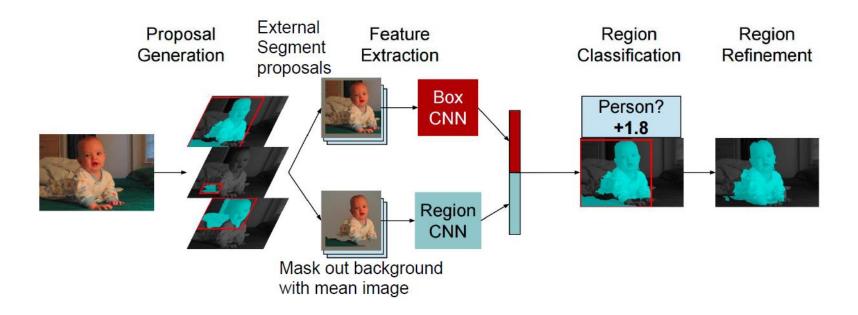






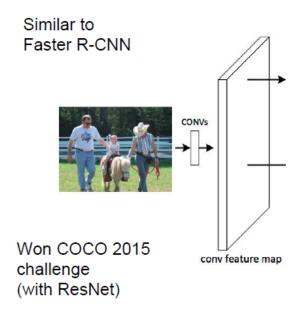


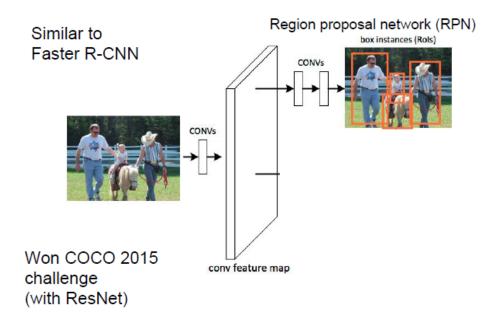


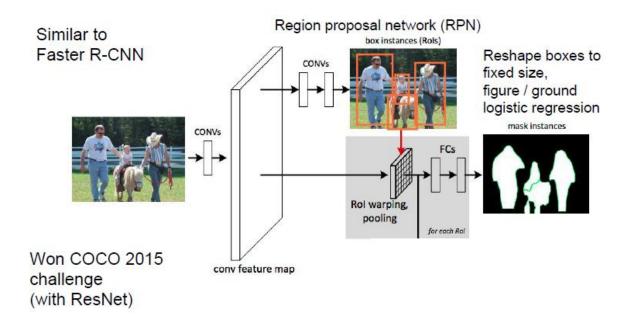


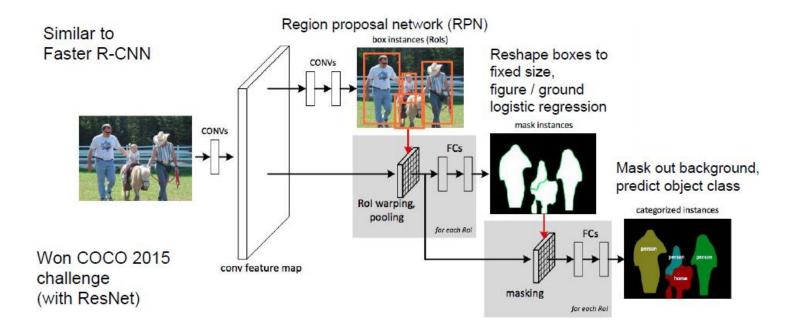
Similar to Faster R-CNN

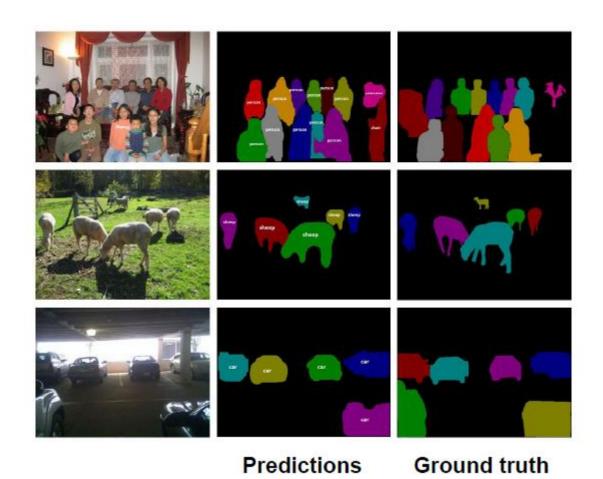
Won COCO 2015 challenge (with ResNet)











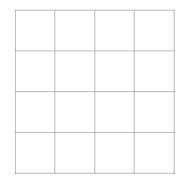
Summary

- Semantic segmentation
 - Classify all pixels
 - Fully convolutional models, downsample then upsample
 - Learnable upsampling: fractionally strided convolution
 - Skip connections can help
- Instance segmentation
 - Detect instance, generate mask
 - Similar pipelines to object detection

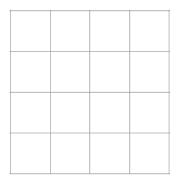
BACKUPS

LEARNABLE UPSAMPLING?

Typical 3 x 3 convolution, stride 1 pad 1

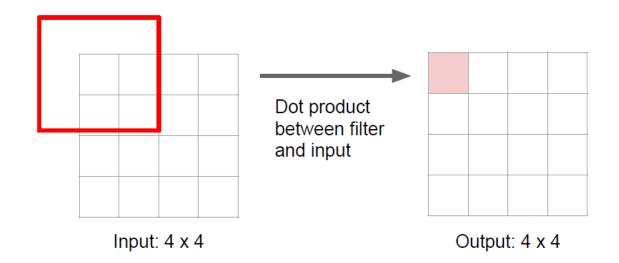


Input: 4 x 4

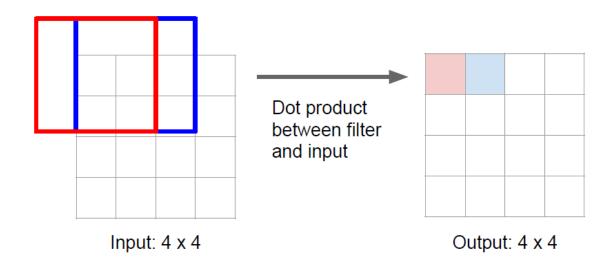


Output: 4 x 4

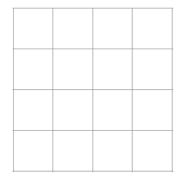
Typical 3 x 3 convolution, stride 1 pad 1



Typical 3 x 3 convolution, stride 1 pad 1



Typical 3 x 3 convolution, stride 2 pad 1



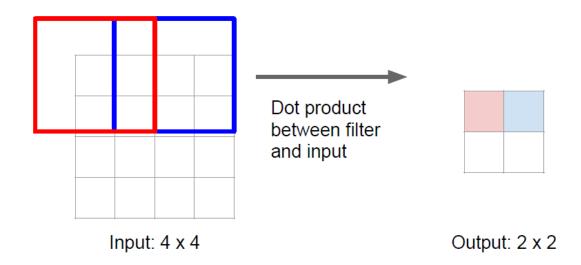
Input: 4 x 4

Output: 2 x 2

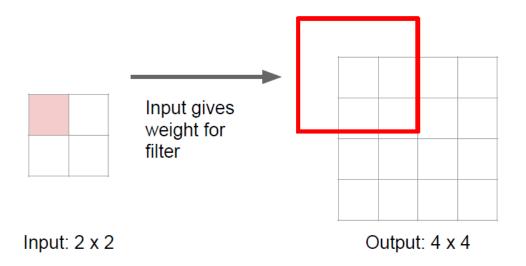
Typical 3 x 3 convolution, stride 2 pad 1



Typical 3 x 3 convolution, stride 2 pad 1



3 x 3 "deconvolution", stride 2 pad 1



3 x 3 "deconvolution", stride 2 pad 1

