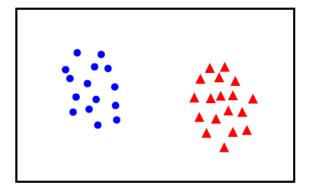
SVM classifiers

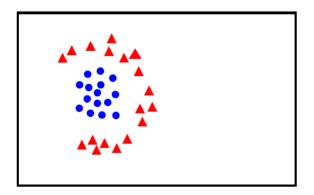
Binary classification

Given training data (x_i, y_i) for i = 1 ... N, with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$, learn a classifier f(x) such that

$$f(x_i) = \begin{cases} \ge 0, \ y_i = +1 \\ < 0, \ y_i = -1 \end{cases}$$

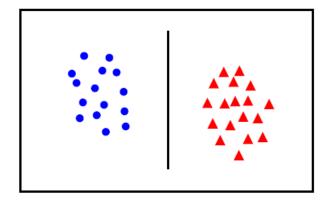
i.e. $y_i f(x_i) > 0$ for a correct classification.

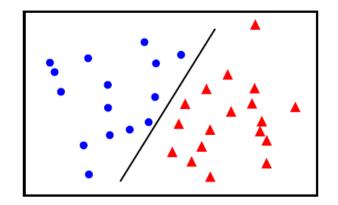




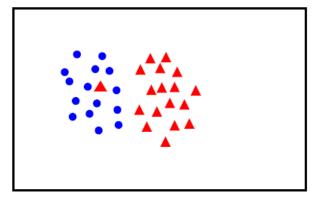
Linear separability

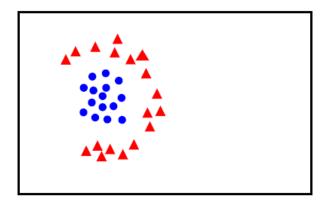
Linearly separable





not Linearly separable

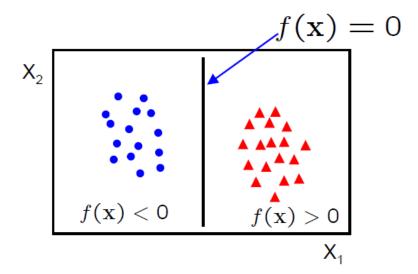




Linear classifiers

A linear classifier has the form

 $f(x) = w^T x + \mathbf{b}$

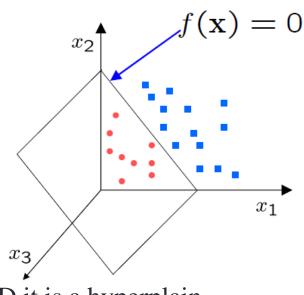


- In 2D the discriminant is a line
- *w* is the normal to the line, and b the bias
- *w* is known as the weight vector

Linear classifiers

A linear classifier has the form

 $f(x) = w^T x + \mathbf{b}$



• In 3D the discriminant is a plane, and in nD it is a hyperplain

For a K-NN classifier it was necessary to 'carry' the training data For a linear classifier, the training data is used to learn *w* and then discarded Only *w* is needed for classifying new data

Reminder: The Perceptron Classifier

Given linearly separable data x_i labelled into two categories $y_i = \{-1,1\}$, find a weight vector *w* such that the discriminant function

$$f(x_i) = w^T x_i + \mathbf{b}$$

Separates the categories for i = 1, ..., N

• How can we find this separating hyperplane?

The Perceptron Algorithm

Write classifier as $f(x_i) = \widetilde{w}^T \widetilde{x}_i + \omega_0 = w^T x_i$ where $w = (\widetilde{w}, \omega_0), x_i = (\widetilde{x}_i, 1)$

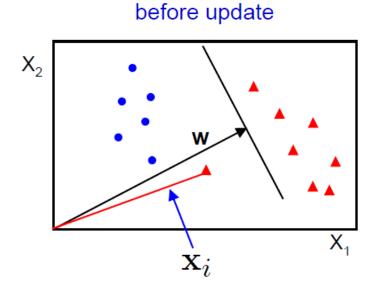
- Initialize w = 0
- Cycle though the data points $\{x_i, y_i\}$

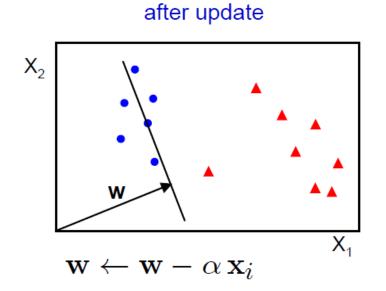
• If x_i is misclassified then $w \leftarrow w + \alpha \operatorname{sign}(f(x_i))x_i$

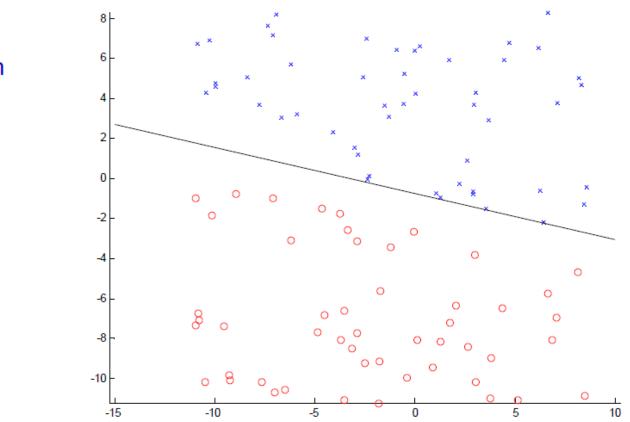
• Until all the data is correctly classified

For example in 2D

- Initialize w = 0
- Cycle though the data points $\{x_i, y_i\}$
 - If x_i is misclassified then $w \leftarrow w + \alpha \operatorname{sign}(f(x_i))x_i$
- Until all the data is correctly classified

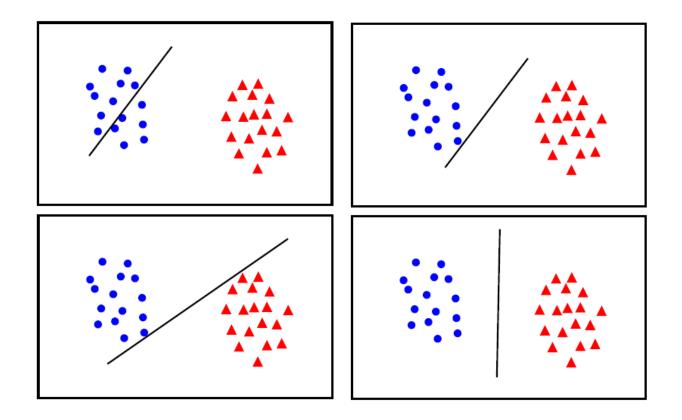






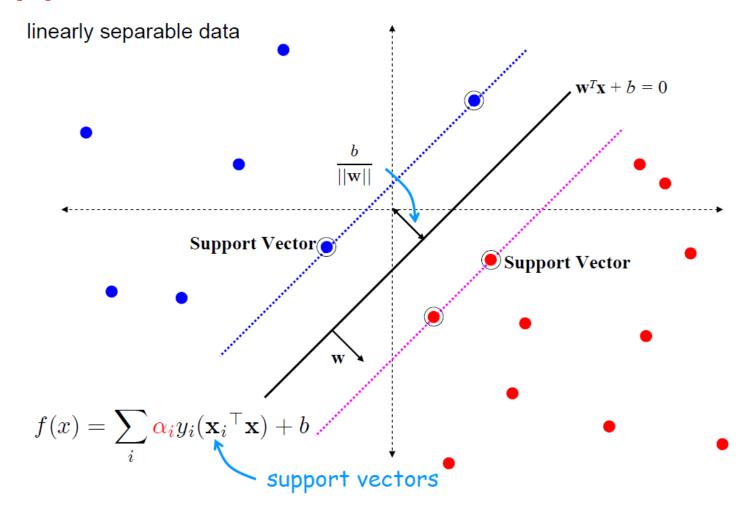
Perceptron example

- If the data is linearly separable, then the algorithm will converge
- Convergence can be slow ...
- Separating line close to training data
- We would prefer a larger margin for generalization



• Maximum margin solution: most stable under perturbations of the inputs

Support Vector Machine



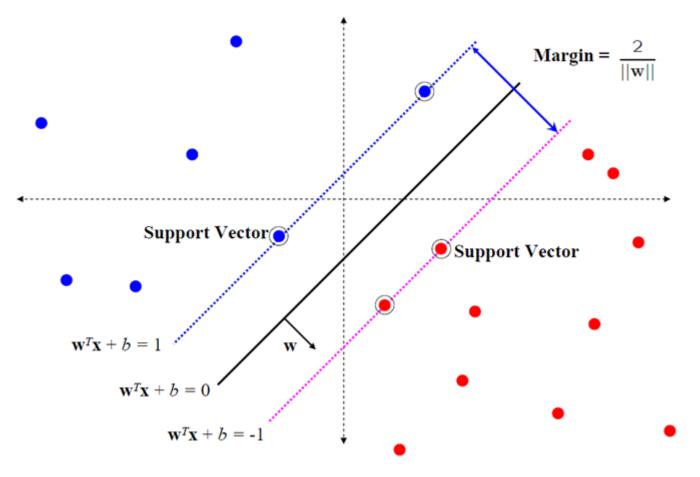
SVM – sketch derivation

- Since $w^T x + b = 0$ and $c(w^T x + b) = 0$ define the same plane, we have the freedom to choose the normalization of *w*
- Choose normalization such that $w^T x_+ + b = +1$ and $w^T x_- + b = -1$ for the positive and negative support vectors respectively
- Then the margin is given by

$$\frac{w}{\|w\|} \cdot (x_{+} - x_{-}) = \frac{w^{T}(x_{+} - x_{-})}{\|w\|} = \frac{2}{\|w\|}$$

Support Vector Machine

Linearly separable data



SVM – Optimization

• Learning the SVM can be formulated as an optimization:

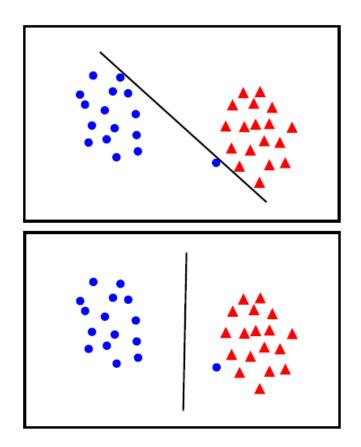
$$\max_{w} \frac{2}{\|w\|} \text{ subject to } w^{T}x_{i} + b \begin{cases} \geq 1 & \text{if } y_{i} = +1 \\ \leq -1 & \text{if } y_{i} = -1 \end{cases} \text{ for } i = 1 \dots N$$

• Or equivalently

 $\min_{w} ||w||^2 \text{ subject to } y_i(w^T x_i + b) \ge 1 \text{ for } i = 1 \dots N$

• This is a quadratic optimization problem subject to linear constraints and there is a unique minimum

Linear separability again: What is the best w?

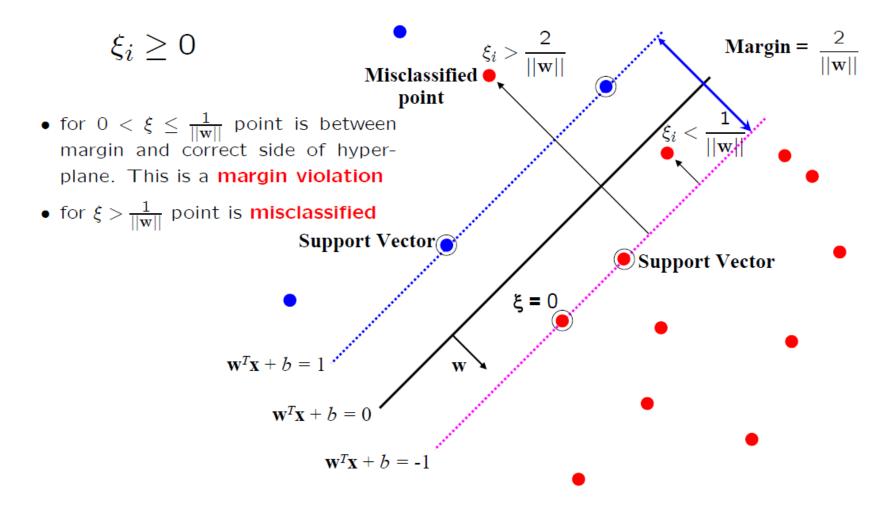


• The points can be linearly separated but there is a very narrow margin

• But possibly the large margin solution is better, even though one constraint is violated

In general there is a trade off between the margin and the number of Mistakes on the training data

Introduce "slack" variables



"Soft" margin solution

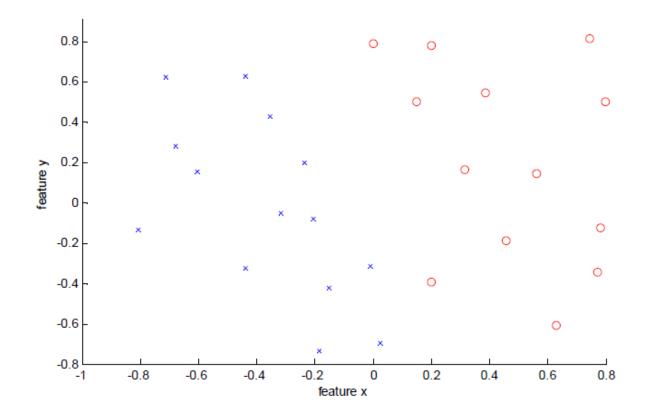
The optimization problem becomes

$$\min_{w \in Rd, \xi_i \in R^+} \|w\|^2 + c \sum_i^N \xi$$

subject to

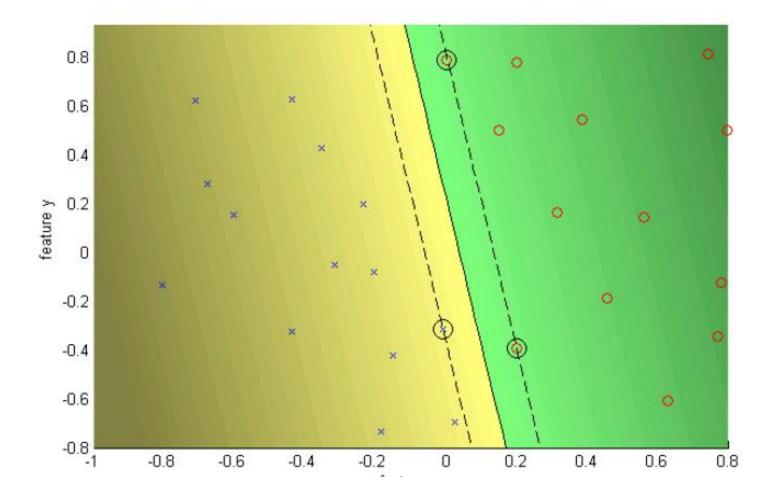
$$y_i(w^T x_i + b) \ge 1 - \xi_i \text{ for } i = 1 \dots N$$

- Every constraint can be satisfied if ξ_i is sufficiently large
- *C* is regularization parameter:
 - small *C* allows constraints to be easily ignored \rightarrow large margin
 - large C makes constraints hard to ignored \rightarrow narrow margin
 - $C = \infty$ enforces all constraints: hard margin
- This is still a quadratic optimization problem and there is a unique minimum. Note, there is only one parameter, *C*.



- Data is linearly separable
- But only with a narrow margin

$C = \infty$: hard margin



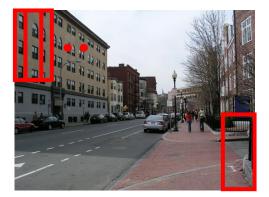
C = 10 soft margin



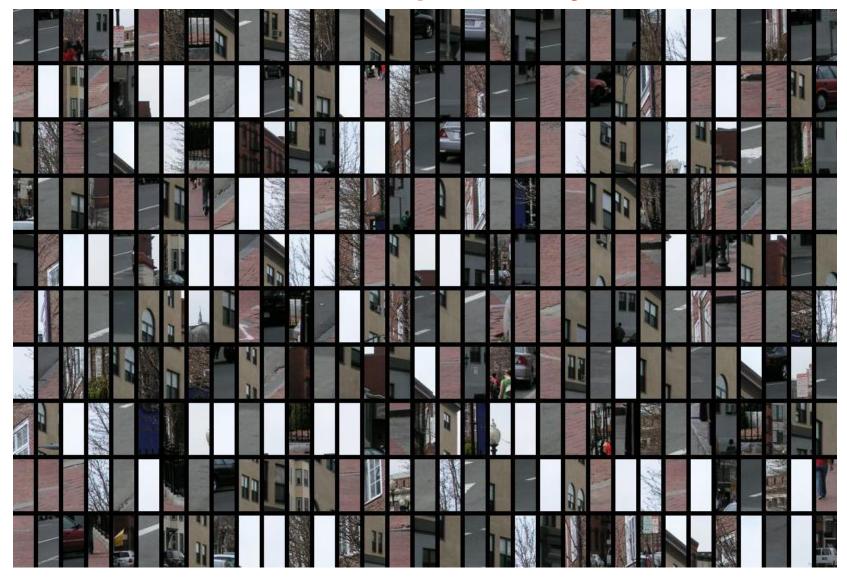
Application: Pedestrian detection in Computer Vision

- Objective: detect (localize) standing humans in an image (c.f. face detection with a sliding window classifier)•
 - reduces object detection to binary classification
 - does an image window contain a person or not?

Detection problem \rightarrow (binary) classification problem



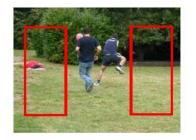
Each window is separately classified

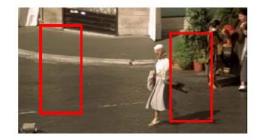


Training data

- 64x128 images of humans cropped from a varied set of personal photos
- Positive data 1239 positive window examples (reflections->2478)

• Negative data – 1218 person-free training photos (12180 patches)

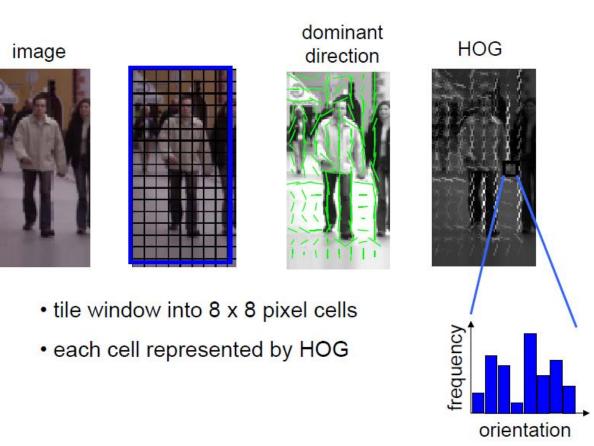




Training

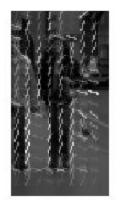
- A preliminary detector
 - Trained with (2478) vs (12180) samples
- Retraining
 - With augmented data set
 - initial 12180 + hard examples
 - Hard examples
 - 1218 negative training photos are searched exhaustively for false positive

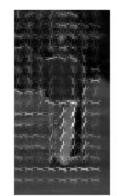
Feature: histogram of oriented gradients (HOG)



Feature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024

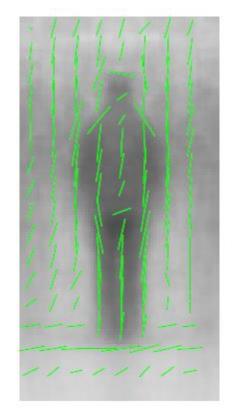


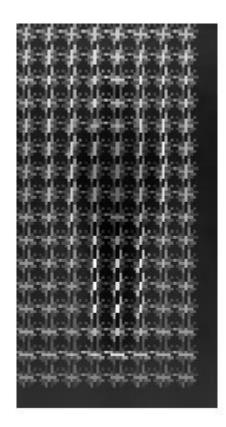






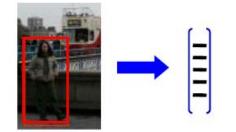
Averaged examples





Algorithm

- Training(Learning)
 - Represent each example window by a HOG feature vector



$$\mathbf{x}_i \in \mathbb{R}^d$$
, with $d = 1024$

- Train a SVM classifier
- Testing(Detection)
 - Sliding window classifier

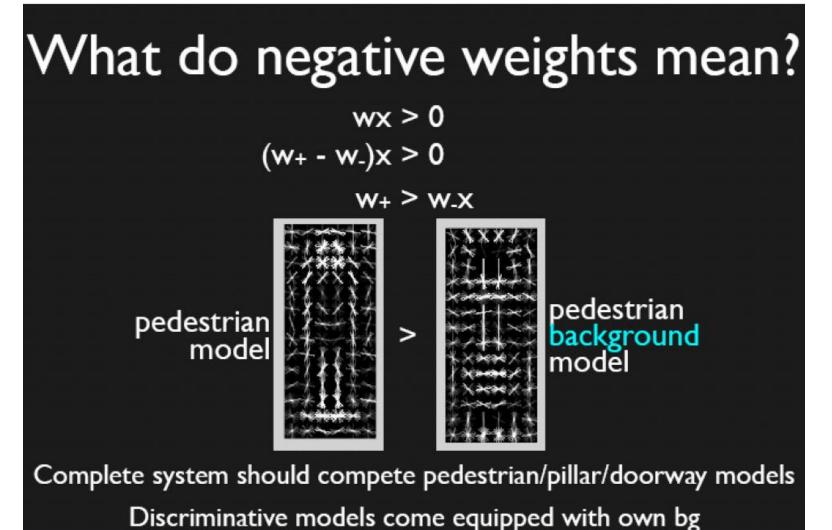
$$f(x) = wTx + b$$

Learned model

$$f(x) = wTx + b$$



Slide from Deva Ramanan



(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan