SVM classifiers




Binary classification

Given training data (x;, y;) fori=1... N, withx; € R¢and y; € {-1,1},
learn a classifier f(x) such that

. ZO,yi= +1
f(xi)_{< 0, yi=_1

l.e. y;f(x;) >0 for a correct classification.
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Linear separability
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| Inear classifiers

A linear classifier has the form /f(x) —0
X
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- In 2D the discriminant is a line
- w IS the normal to the line, and b the bias
- w Is known as the weight vector



| Inear classifiers

A linear classifier has the form

f(x)=wlx+b

I3

- In 3D the discriminant is a plane, and in nD it is a hyperplain

For a K-NN classifier it was necessary to ‘carry’ the training data
For a linear classifier, the training data is used to learn w and then discarded
Only w is needed for classifying new data



Reminder: The Perceptron Classifier

Given linearly separable data x; labelled into two categories y; = {-1,1}, find a
weight vector w such that the discriminant function

fG) =wTx+ b
Separates the categoriesfori=1, ... N
- How can we find this separating hyperplane?

The Perceptron Algorithm

Write classifier as f(x;) = Wix; + o, = w'x;
where w = (W, o), x; = (X;,1)
- Initializew =0
- Cycle though the data points {x;, y; }
- If x; is misclassified then w «— w + asign(f (x;))x;
- Until all the data is correctly classified









For example in 2D

- Initializew =0
- Cycle though the data points {x;, y; }

- If x; is misclassified then w «— w + asign(f (x;))x;
- Until all the data is correctly classified
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- If the data is linearly separable, then the algorithm will converge
- Convergence can be slow ...

- Separating line close to training data

- We would prefer a larger margin for generalization
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- Maximum margin solution: most stable under perturbations of the inputs
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Support Vector Machine
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SVM — sketch derivation

- Since wix+ b = 0 and c(wTx+ b) = 0 define the same plane, we have the
freedom to choose the normalization of w

- Choose normalization such that w"x,+ b = +1 and w”x_+ b = -1 for the
positive and negative support vectors respectively

- Then the margin is given by
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Support Vector Machine

Linearly separable data
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L
SVM — Optimization

- Learning the SVM can be formulated as an optimization:

> 1 ifyi=+1

<—1ify,= 1 fori=1...N

2 .
max — subject to w’x; + b
w vl

- Or equivalently
min||lw||? subjecttoy,(w'x;+b) = 1fori=1...N
w

- This iIs a quadratic optimization problem subject to linear constraints and
there is a unique minimum



Linear separability again: What is the best w?

- The points can be linearly separated but there is
a very narrow margin
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In general there iIs a trade off between the margin and the number of
Mistakes on the training data



Introduce “slack” variables
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“Soft” margin solution

The optimization problem becomes

N
min  ||w]|? + 62 &
i

WERd,§.ERT

subject to
y(wlx,+b) > 1-& fori=1...N

- Every constraint can be satisfied if &, is sufficiently large

- C i1s regularization parameter:
- small C allows constraints to be easily ignored — large margin
- large C makes constraints hard to ignored — narrow margin
- C = oo enforces all constraints: hard margin

- This is still a quadratic optimization problem and there is a unique minimum.
Note, there is only one parameter, C.
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- Data is linearly separable
- But only with a narrow margin
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L
C = oo : hard margin
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C = 10 soft margin
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L
Application: Pedestrian detection in

Computer Vision

- Objective: detect (localize) standing humans in an image
(c.f. face detection with a sliding window classifier)e
- reduces object detection to binary classification
- does an image window contain a person or not?



L
Detection problem = (binary) classification
problem
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L
Training data

- 64x128 images of humans cropped from a varied set of personal photos
- Positive data — 1239 positive window examples (reflections->2478)




L
Training

- A preliminary detector
- Trained with (2478) vs (12180) samples

- Retraining
- With augmented data set
- initial 12180 + hard examples

- Hard examples
- 1218 negative training photos are searched exhaustively for false positive



Feature: histogram of oriented gradients
(HOG)

_ dominant
Image direction HOG

* tile window into 8 x 8 pixel cells

* each cell represented by HOG

frequency

orientation

Feature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024
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Averaged examples




Algorithm

- Training(Learning)
- Represent each example window by a HOG feature vector

. = H x,E R4, with d = 1024

- Train a SVM classifier

- Testing(Detection)
- Sliding window classifier

f(x) =wTx+D






Learned model

fx)=wTx+D
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Slide from Deva Ramanan



What do negative weights mean!

wx > 0
(W+=-w)x>0
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Complete system should compete pedestrian/pillar/doorway models
Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan




