LECTURE 5: DUAL PROBLEMS AND
KERNELS

* Most of the slides in this lecture are from
http://www.robots.ox.ac.uk/~az/lectures/ml



L
Optimization

Learning an SVM has been formulated as a constrained optimization prob-
lem over w and &

N
min _ ||w[[? 4+ CY & subject to y; (wx;+b) >1—¢& fori=1...N
weRd EcRT ;

T he constraint y; (wai —I—b) > 1—&;, can be written more concisely as

yif(x) 21§
which, together with & > 0, is equivalent to
& =max (0,1 — y; f(x;))

Hence the learning problem is equivalent to the unconstrained optimiza-
tion problem over w

min ||WH2+OZ max (0,1 —y;f(x;))
wer LYJ ©N Y g

regularization loss function




Loss function

N
; 2
min |[w|[“ 4+ C> max (0,1 —y;f(x;)
Y @

wix+h=0
loss function ® @ )
Points are in three categories: Support Vector.
1. yif(es) > 1 o e
Point is outside margin. L " ()
No contribution to loss @gupport Vector
2. yif(z) =1 .
Point is on margin. y
No contribution to loss. o ®
As in hard margin case.

3. yif(x) <1
Point violates margin constraint.
Contributes to loss



L
Loss functions

5 . :
— 0-1

4 — hinge

3 s

2 B

1

Y2 a4 0 1 2 3 a4 g
y; f(x;)

» SVM uses “hinge” loss max (0,1 — y; f(x;))

* an approximation to the 0-1 loss



D
SVM - review

o We have seen that for an SVM learning a linear classifier

f(z)=w'x+b
is formulated as solving an optimization problem over w :
. N
min [|w||* + C Y max (0,1 — yif(x:))
WER’d i

e This quadratic optimization problem is known as the primal problem.

e Instead, the SVM can be formulated to learn a linear classifier

N
F(x) =3 aui(x;"x) + b
i
by solving an optimization problem over a;.

e This is know as the dual problem, and we will look at the advantages
of this formulation.



PRIMAL-DUAL
PROBLEM




D
Max-min inequality

max min flx, A) < min max flx, A)

g(A) = min f(z, )

g\ < f(z,\),Vr

mfxg(k) < mef(cl?,)\),Vx

A) < mi A
max g(A) < minmax f(z, A)

sup inf f(r,y) < inf sup f(x,y).
z&yéyf( y) yeyzegf( y)

The reasoning goes quite straightforwardly from the definitions of sup and inf,

f(x, y) < f:gf(xv y),V:z,y
f f(z,y) < sup f(z,y)
zEX
sup inf fla.y) = sup floy)
p inf f(z,y) < inf sup f(z,y)

eeeeeeeeeee




minl(a:2+y2) st. r+y=1
T,y 2
1 2 2
(@t +y) aty=1
9(z.y) { 00 otherwise

1
min g(x,y) = min max 7 (2" +v°) + Ma +y — 1)
z,y z,y

1
> in = (22 + ¢* —1
_J%m%?2@:+y)+Mx+y )
1

_ ) )2
—m)z\u(()\ A7) 1




1
1;13;15(~”02+y2) st rty>1

1 /(..2 2
- )2 (JC +y ) r+y =1
9(z,y) { 00 otherwise
. . L, 5 9
p’ = ming(z,y) = minmax s (2 +y7) = Az +y —1)

1
> maxmin = (22 +y*) — ANz +y—1)=d"

A>0 2y
2 1
= max()\ — )\ ) = Z

A>0




111 i, HP e[
1(a72+y2) st. x+y=>1

oy 2 y >0
L@+ 24y>1 & y>0
- )2 = >
9(,y) { 00 otherwise
1

* . _ . = 2 2y . . .
p=ming(z,y) = min max o (¢* +y°) = Ma+y - 1) = ply = 1/2)
1
> . _ 2 2 _A _1 _
2 min max o (¢* + y?) (z+y—1)— uy)

T=AYy=A+p

1
= A= N — 22— u
,\S%i}éo( 2}u M)
A=—1u=20

Q,M

1
4




Duality gap
p* . d*
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Example

1
min — (552 + y2)
T,y 2

st. z4+y=>1

1
p" =min max = (2 +y°) —AMa+y—1)— u(z)

1
> max min= (2" +¢°) — Moz +y—1) —plz) =d'

 A>0,u>0 @y



PRIMAL-DUAL
PROBLEM:GEOMETRIC
INTERPRETATION




Necessary conditions [edit

Suppose that the objective function f : R® — R and the constraint functions g; : R® — R and h; : R* — R are continuously differentiable at a peint
®' I 2" is a local optimum and the optimization problem satisfies some regularity conditions (see below), then there exist constants py [i =1,...,m)

and \; (7 =1,...,£), called KKT multipliers, such that
Stationarity

m i
For maximizing £x: Vflz®) = Z wiVai(z®) + z AiVhi(z*),

iml dml
m £
For minimizing f0: —V f(z*) = vam (z*) + Z AiVh;(z"),
=1 =1

Primal feasibility
gi(z") <0, fori=1,...,m
hi(z*) =0, forj=1,...,¢£
Dual feasibility
p; =0, fori=1,...,m
Complementary slackness
pigi(z®) =0, for i=1,...,m.
In the particular case m = 0, i.e, when there are no inequality constraints, the

KET conditions turn into the Lagrange conditions, and the EKT multipliers are
called Lagrange multipliers.

If some of the functions are non-differentiable, subdifferential versions of
Karush—-Kuhn—Tucker (KKT) conditions are available %]

Inequality constraint diagram for optimization problems




fxy)

Find x and y to maximize f(x, y) subject to a The red line shows the constraint g(x, y) = c.

constraint (shown in red) g(x, y) = c. The blue lines are contours of f(x, y). The
point where the red line tangentially touches
a blue contour is the solution. Since d, > d,,
the solution is a maximization of f(x, y).



DUAL FORM OF SVM
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Primal Form

N
(1,
in (5 |w]] +CZ;&)

st yilw'zi+b) >1-¢
& >0 (i=1,...,N)



min  max ( w]? +Z C& — ai(yi(w i +0) — 1+ &) — ﬁz‘fi))

w7ba§7,20 0%20:/6@20

04120’6120 ’wybaszO

i

1
> max min (5 HwHQJrZ(sz ai(yi(w'z; +0) — 14+ &) — @'fi))

. 1 9 .
B oziIZr(l]%}fZO wg,lég(] (5 HU)H T Z (( — Q= /81)5 ai(yi(’w x; + b) — 1)))

w = E QY Ty
i

- L) = 1
=, (Z ai =5 ] ) =, e ( Cai- 3 Y g )
1




L
The Representer Theorem

The Representer Theorem states that the solution w can always be
written as a linear combination of the training data:

N
W= ) ay;X;
=1



L
Primal and dual formulations

N is number of training points, and d is dimension of feature vector x.

Primal problem: for w € R4

N
min [|w||? +CY max (0,1 — y;f(x;))
weRd F

Dual problem: for a € RN

1
:Eo Z D Zajﬂkyjyk(xj x}) subject to 0 < a; < C for Vi, and E a;y; = 0
¥ . N :

e Need to learn d parameters for primal, and N for dual

e If N << d then more efficient to solve for a than w

e Dual form only involves (ijxk). We will return to why this is an
advantage when we look at kernels.



L
Primal and dual formulations

Primal wversion of classifier:

f(x) =w'x+b

Dual version of classifier:

N
f(x) = Z ayi(x; T x) + b

At first sight the dual form appears to have the disad-
vantage of a K-NN classifier — it requires the training
data points x;. However, many of the «;'s are zero. The
ones that are non-zero define the support vectors x;.



L
Support Vector Machine

F@) = onyi(xiTx) +b . ¢
i v
support vectors



KERNEL TRICK




Handling data that is not linearly
separable

°
L]
>
=
>
>

AAA 4

* introduce slack variat%!res
: 2

min wl||c+ C :

weamin _lwl g i

subject to

yi(Wixi+b) >1—¢gfori=1...N

» linear classifier not appropriate
??



Solution 1: use polar coordinates

\ <0 >0
xz A
¢ A
L] A A
0 Ll
[ N
A A A A
. . A A
A
Y SN
L ]
T >
0 X r

Data is linearly separable in polar coordinates
Acts non-linearly in original space

d):(xl)—rr(T) R? —s R?
o 0



Solution 2: map data to higher
dimension

T m%
cb:(;)—} 3 R2 — R3
2 \/5.’1?1.’132

15+
A Z = 2z120
) A 4 . 14
A
4 e 00 4 05
L]
A - . & A
0 N *. " N ) O
LI P A
L]
A L A 05
A A A A 1
> 1.5
| 0 8 1
0 * w
Y =23 X=a:%

* Data is linearly separable in 3D
* This means that the problem can still be solved by a linear classifier



SVM classifiers in a transformed
feature space

A

f(x)=0

Rd 4 a4 a RD

d:x - P(x) R RP

Learn classifier linear in w for RL:

f(x) =w'd(x)+b

P (x) is a feature map



Kernel trick visualization

SVM with a polynomial
Kernel visualization

Created by:
Udi Aharoni




Primal Classifier in transformed
feature space

Classifier, with w € RD:

f(x) =w'd(x)+0b
Learning, for w € RP

weE

N
m}g}j |w]|? + C; max (0,1 — y; f(x;))

e Simply map x to ®(x) where data is separable
e Solve for w in high dimensional space RY

e If D >> d then there are many more parameters to learn
for w. Can this be avoided?



Dual Classifier in transformed
feature space

Classifier:
N
f(xX) = Y ouuix;'x+b
i
N
= f(x) = Y iy P(x) TP(x)+b
1
Learning:
max ) «; —EZa-a YiypXs | X
ﬂfiioiz ijjkjkj k
1
— maxz o — — Z ajakyjykcb(xj)-rd)(xk)
;=0 2 ik
subject to

0 < a; <C for Vi, andZaiy,,; =0
i



Dual Classifier in transformed
feature space

e Note, that ®(x) only occurs in pairs ®(x;) ' d(x;)

e Once the scalar products are cemputed, only the N dimensional
vector a needs to be learnt; it is not necessary to learn in the
D dimensional space, as it is for the primal

o Write k(x;,x;) = ®(x;)' ®(x;). This is known as a Kernel

Classifier:

N

F(x) =) ay; k(x;,x) +b

i
Learning:

1

max Y a; — =Y ajopyiyy k(x, ;)

subject to

0<a; <C for Vi, and ) a;y; =0
i
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Special transformations

2
T "3 2 3
b - — x5 R —= R
2 \/5331&':2
2

z
P(x)P(z) = (m%,mgﬁﬁmlmg) zé
22129

2.2 2.2
r12] + 525 + 2x1T021 22
2
(z121 + 2222)
(x'2z)?

Kernel Trick

e Classifier can be learnt and applied without explicitly computing ®(x)

e All that is required is the kernel k(x,z) = (x'z)?2

e Complexity of learning depends on N (typically it is O(N3)) not on D



L
Example kernels

Txr

e Linear kernels k(x,x) = x
d
e Polynomial kernels k(x,x’) = (1 + xTx’) forany d > 0
— Contains all polynomials terms up to degree d

e Gaussian kernels k(x,x’) = exp (—||x— x’||2/2:.:r'2) for c >0

— Infinite dimensional feature space



Valid kernels — when can the
kernel trick be used?

e Given some arbitrary function k(x;,x;), how do we know
if it corresponds to a scalar product ®(x;) " ®(x;) in some
space?

e Mercer kernels: if k(,) satisfies:
— Symmetric k(xi,xj) = k‘(xj,xi)

— Positive definite, a'Ka > 0 for all @ € RY, where K is
the N x N Gram matrix with entries K;; = k(x;,x;).

then k(,) is a valid kernel.

e c.9. k(x,z) = x 'z is a valid kernel, k(x,z) = x—x!z is not.
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Kernel Trick - Summary

- Classifiers can be learned for high dimensional features spaces,
without actually having to map the points into the high
dimensional space

- Data may be linearly separable in the high dimensional space,
but not linearly separable in the original feature space

- Kernels can be used for an SVM because of the scalar product
In the dual form, but can also be used elsewhere — they are not
tied to the SVM formalism



KERNEL SVM EXAMPLE




SVM classifier with Gaussian
kernel

N = size of training data

N
f(x) = Zaz’yik(xi:x) b

AN

weight (may be zero)

support vector

Gaussian kernel k(x,x’) = exp (—|[x — ¥/||2/20?)
Radial Basis Function (RBF) SVM

N
FOO) =" agyiexp (—|Ix —xil|°/20%) +b
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RBF Kernel SVM Example

A k4
0.6F x " won x
X M E H
% u xoog
L. " x
0.4k o
*® * ®
X " 0 *
o d o] o]
- 0.2k ) o o o O -
g x o9 5o
ﬁ oo © 0 o
<= 0 . o} oo R
o ]
x o
% o® o o # .
0.2+ . P
* x 5 x L
= ® = « u ® x =
04t "on wx . .
o= kA
0.6 i 1 | I | 1 1 ] |
-0.8 -0.6 0.4 0.2 0 0.2 04 0.6 0.8 1
feature x

- data is not linearly separable in original feature space



P
08 06 0.4 02 0 02 0.4 06 08 1 l Creals taia |
feature x

| Reset I
Comment Window r—ﬁ
Train S¥M

Kernel evaluations: 321750 Info

SVM (L1) by Sequertial Minimal Optimizer
Kernel: rbf (1), C Inf

Close

N
fx) =3 cqysexp (—|lx — x;[?/20%) + b



g=10 €= 100

feature y

Load data

Create data

feature x

[ tensw ]

SVM (L1) by Sequential Minimal Optimizer

Kernel, rbf (1), C: 100.0000

Kernel evalustions: 396685 Info
Number of Support Vectors: 8

Margin: 0.0519

Training error: 0.00% v Close

Decrease C, gives wider (soft) margin



feature y

feature x

SVM (L1) by Sequertial Minimal Optimizer
Kernel: rbf (1), C: 10,0000
Kernel evalustions: 46158
Number of Support Vectors: 24

Margin: 0.0755

10

epsilon tolerance

1e-31e.3

[¥] Background

Load data

Create data

Treining error. 0.00%

N
FO) =Y auyiexp (—I1x — x|[*/20%) +b

Reset
[ Tenswm |

Info

Close
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08 06 0.4 02 0 02 0.4 06 08 1 l Creals taia |
feature x

| Reset I
Comment Window r—ﬁ
Train S¥M

Kernel evaluations: 321750 Info

SVM (L1) by Sequertial Minimal Optimizer
Kernel: rbf (1), C Inf

Close

N
fx) =3 cqysexp (—|lx — x;[?/20%) + b



feature y

0.2 04 06 08

b8 08 04 02 0
feature x

3

SVYM (L1) by Sequential Minimal Optimizer

Kernel: rbf (0.25), C: Inf
Kernel evalustions: 42795

Number of Support Vectors: 18

Decrease sigma, moves towards nearest neighbour classifier

Load data

[ Create data

Reset I

Info

Close




D8 06 04 02 0 02 04 06 08 g [ ol
feature x

Comment Windaovy
_ | Train SYM |

Kernel evalustions: 173935 Info

SVM (L1) by Sequential Minimal Optimizer
Kernel: rbf (0.1), C: Inf

>

N
fOO) =3 agysexp (—lIx —xil|?/20%) +b



KERNEL SVM EXAMPLE
(XOR PROBLEM)




XOR example

cK(x,y) =0+ xTy)?
=14 x7y7 + 2x1%,91 Y + X5Y5 + 2x1y1 + 2%,Y,
=" () p(y)

cp(x) = [1xF V2xyx, X2 V2xg \/fxz]T

TABLE 6.2 XOR Problem

Input vector,x  Desired response, d

(-1,-1) —1
(-1,+1) +1
(+1,-1) +1

(+1, +1) -1




g 1 1 1
1 9 1 1
K = {K(xiaixj)}gﬁ:l K= 1 1 9 1
11 1 9.
N 1 NN
Qo) = 21&5 — '2‘21 2 aiajdide(xf: Xj)
= i=1 j=1
Ola) = o +a, + o3 + oy — -12-(90.% — 20010 — 20704+ 2004

+ 9a3 + 20,05 ~ 20,04 + 90 — 2004 + 903)




G — o o+ o, = 1

&1‘&2“’&3"'(14:1
'—'(11-{-9[12'}'0{3_{14:1
—ay ta, + %3 —ay =1

W, = % [o(x) + o(x) + ot) ~¢(x)
R T O U I U I I P
1 1 1 1 0
1) V2 L] V2 N -V2 - V2 | -1v2
8 1 1 1 1 0
-V2 -V2 V2 V2 0
CL-va) o Lve] [ -v2] [Val] L oo
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Optimal hyperplane (XOR)

wle(x) = 0
- -
— .
[005—1000} Vaxx, =0
BRVORS 2
V2x,




MULTICLASS SVM




Multiclass SVMs

One-versus-the-rest approach: trains /' separate SVMs, in
which the %-th model y;.(x) is trained using the data from class C;,
as the positive examples and the data from the remaining X' — 1
classes as the negative examples.

The prediction for new input X is by

Y(x) = max Yr(X).

Problems: 1) the output values y,.(x) for different classifiers
have no appropriate scales. 2) the training sets are imbalanced.



Multiclass SVMs

One-versus-one approach: is to train K (K — 1)/2 different 2-

class SVMs on all possible pairs of classes, and then to classify
test points according to which class has the highest number of
votes’.

Problems: it requires more training time and evaluation time.



ONE SVM AND SVDD
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One-class SVM

- To maximize the distance from the hyperplane to the origin

distance = P
]

o1, s 1 E
min —|w|” + — i —
min sl + 223 6 -

subject to:
(w-d(z;)) =p— & foralli =1,..., n
& =0 foralli =1,..., n

f(z) = sgn((w- ¢(z:)) — p) = sen(> " a:K (2, 7:) — p)
i=1
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Dual form of One-Class SVM

N
max —E E ;i (x; ))
1 I\ ]
0<a;<+; ( J

l

Kernel trick

max (— Z Z a;ak (s, 933))

1
0<ay;<-; p



R - :
SVDD

- Support vector data description
- A method to find the boundary around a data set

. 2 .
im0 Z5)
st.  zi—alf < R+E
& >0
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Dual form of SVDD

T
021?2{0 (Z Of?,(x;rxz) — Z ZCYZOZJ(CCZ .CUJ))
t J

Kernel trick

020 2C (Z aik(zi, i) — Z Z aiajk(l'i,xj))
<a;< ~ <



SUMMARY
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SVM parameter selection

- The effectiveness of SVM depends on the selection of kernel,
the kernel's parameters, and soft margin parameter C.

- Typically, each combination of parameter choices is checked
using cross validation, and the parameters with best cross-
validation accuracy are picked.

- The final model, which is used for testing and for classifying
new data, Is then trained on the whole training set using the
selected parameters.
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Choosing the Kernel Function

- Probably the most tricky part of using SVM.

- The kernel function is important because It creates the kernel
matrix, which summarizes all the data

- Many principles have been proposed (diffusion kernel, Fisher kernel,
string kernel, ...)

- In practice, a low degree polynomial kernel or RBF kernel with a
reasonable width is a good initial try



L
Software

- A list of SVM implementation can be found at
- http://www.kernel-machines.org/software

- Some implementation (such as LIBSVM) can handle multi-
class classification

- SVMLight is among one of the earliest implementation of SVM
- Several Matlab toolboxes for SVM are also available



Summary: Steps for Classification

- Select the kernel function to use

- Select the parameter of the kernel function and the value of C

- You can use the values suggested by the SVM software, or you can set
apart a validation set to determine the values of the parameter

- Execute the training algorithm and obtain the «;

- Unseen data can be classified using the a; and the support
vectors

fx) =Ya; yik(x;,x) + b
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Strengths and Weaknesses of SVM

- Strengths

- Training is relatively easy
- No local optimal, unlike in neural networks
- It scales relatively well to high dimensional data
- Tradeoff between classifier complexity and error can be controlled explicitly

- Weaknesses

- Need to choose a “good” kernel function.



L
Conclusions

- SVM is a useful alternative to neural networks
- Two key concepts of SVM:
- maximize the margin and the kernel trick

- Many SVM implementations are available on the web for you
to try on your data set!



