
STATISTICAL MACHINE 
TRANSLATION



Machine translation

• Ways to build a machine that can translate languages

• Rule-based approach

• We can ask a bilingual speaker to give us a set of rules transforming a source 

sentence into a correct translation

• We don’t even know the set of rules underlying a single language, not to 

mention the rules underlying a pair of languages

• Statistical machine translation

• We let the machine learn from data how to translate rather than design a set of 

rules for the machine



Statistical Machine Translation



Characteristics of machine translation

• One-to-many in the sense that one source sentence can be 

translated into many possible translations

• We model the translation function not as a deterministic 

function but as a conditional probability 𝒑(𝒚|𝒙) of a target 

sentence (translation) 𝑦 given 𝑥.

• The conditional probability may apply an equally high probability to more 

than one well-separated configurations/sentences, leading to a one-to-

many relationship between source and target sentences.



Formulation

• To collect pairs of source sentences and their corresponding 

translations (a pair of source and corresponding translation, 

respectively)

• To score a model by looking at how well the model works on 

the training data 𝐷



Formulation

• Score

• the log-likelihood of the model on each pair is simply how high a log-

probability the model assigns to the pair

• Training/Learning 

• If the log-likelihood 𝐿(⋅,⋅) is low, the model is not giving enough 

probability mass to the correctly translated pairs.

• We want to find a configuration of the model, or the values of the 

parameters 𝜃 that maximizes this log-likelihood, or score.



Modeling – Neural Machine Translation

• The goal of NMT 

• to design a fully trainable model of which every component is tuned based 

on training corpora to maximize its translation performance

• Recurrent Neural Networks 

• One important property of machine translation, or any task based on 

natural languages, is that we deal with variable-length input 𝑋 =
𝑥1, 𝑥2, … , 𝑥𝑇 and output 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑇′) . In other words, 𝑇 and 𝑇′

are not fixed



RNN AS A PROBABILISTIC 
SEQUENCE MODEL



• 𝑝(𝑋) = 𝑝(𝑥1, 𝑥2, … , 𝑥𝑇) into

• We let an RNN model 𝑝(𝑥𝑡|𝑥<𝑡) at each time 𝑡 by

• 𝑔𝜃 outputs a probability distribution conditioned on the whole 

history up to the (𝑡 − 1) −th symbol via ℎ𝑡−1. In other words, at 

each time step, the RNN tries to predict the next symbol given 

the history of the input symbols.

=



RNN

• Probabilistically model a sequence

• Summarize a sequence

• to compress a sequence of input symbols into a fixed-dimensional vector 

by using recursion



ENCODER-DECODER 
ARCHITECTURE FOR MACHINE 
TRANSLATION

https://devblogs.nvidia.com/parallelforall/introduc

tion-neural-machine-translation-gpus-part-2/



Encoder-Decoder for Machine Translation

• When translating a short sentence in English to Korean, a brain encodes the 

English sentence into a set of neuronal activations, and from those 

activations, the corresponding Korean sentence is generated.

• In other words, the process of (human) translation involves 

the encoder which turns a sequence of words into a set of neuronal 

activations (or spikes, or whatever’s going on inside a biological brain) and 

the decoder which generates a sequence of words in another language, from 

the set of activations



Big picture of the whole system



Encoder

• A straightforward application of a recurrent neural network, 

based on its property of sequence summarization

• RNN ℎ𝑇 is the summary of the whole input sentence.

A word to a one-hot vector



Encoder

• A one-hot vector to a continuous-space representation



Encoder

• Sequence summarization by a recurrent neural network

• RNN’s internal state ℎ𝑇 represents a summary of the whole source 

sentence.



WHAT DOES THE SUMMARY 
VECTOR LOOK LIKE?



Decoder

• Now we have a nice fixed-size representation of a source 

sentence



Next word probability



Sampling

• We have a probability distribution over the target words, which 

we can use to select a word by sampling the distribution



Training

• Corpus 𝐷 must be prepared. 

• Each sample in the corpus is a pair 𝑋𝑛, 𝑌𝑛 of source and target 

sentences. 

• Each sentence is a sequence of integer indices corresponding to words, 

which is equivalent to a sequence of one-hot vectors. 

• Given any pair from the corpus, the NMT model can compute the 

conditional log-probability of 𝑌𝑛 given 𝑋𝑛: log 𝑃 𝑌𝑛 𝑋𝑛, 𝜃), and we 

write the log-likelihood of the whole training corpus as



Stochastic gradient descent



SOFT ATTENTION MECHANISM 
FOR NEURAL MACHINE 
TRANSLATION

https://devblogs.nvidia.com/parallelforall/introduc

tion-neural-machine-translation-gpus-part-3/



Simple Encoder-Decoder Architectures

• In the encoder-decoder architecture, the encoder compresses the 

input sequence as a fixed-size vector from which the decoder 

needs to generate a full translation.

• Translation quality dramatically degrades as the length of the 

source sentence increases when the encoder-decoder model size 

is small



Bidirectional RNN

• The biggest issue with the simple encoder-decoder architecture 

is that a sentence of any length needs to be compressed into a 

fixed-size vector

• Bidirectional recurrent neural network (BiRNN) which consists 

of a forward recurrent neural network (RNN) and a 

separate backward RNN.



Bidirectional RNN

• ℎ→𝑗 of the forward RNN summarizes the source sentence up to 

the 𝑗-th word beginning from the first word

• ℎ𝑗← of the backward RNN up to the 𝑗-th word beginning from 

the last word



Annotation vectors

• Annotation vector as a context-dependent word representation 

• We can consider this set of context-dependent word 

representations as a mechanism by which we store the source 

sentence as a variable-length representation

Annotation vector



Selective focus

• With this variable-length representation of a source sentence, 

the decoder now needs to be able to selectively focus on one or 

more of the context-dependent word representations, or the 

annotation vectors, for each target word.

• A typical translator looks at each source word 𝑥𝑗 (or its context-

dependent representation ℎ𝑗), considers it together with the 

already translated words (𝑦1, 𝑦2, … , 𝑦𝑡−1) and decides how 

(ir)relevant the source word 𝑥𝑗 is for the next target word. It 

repeats this process for every word in the source sentence.



Attention mechanism



Attention mechanism



Attention mechanism



Example



GOOGLE'S NEURAL MACHINE 
TRANSLATION

http://smerity.com/articles/2016/google_nmt_arch.

html



Encoder-decoder model

• Take an recurrent neural network (RNN) - usually an LSTM - and encode a 

sentence written in language A (English).

• The RNN spits out a hidden state, which we refer to as S.

• This hidden state hopefully represents all the content of the sentence.

• This hidden state S is then supplied to the decoder, which generates the 

sentence in language B (German) word by word.



Drawbacks

• First, 

• this architecture has very limited memory. That final hidden state of the 

LSTM, which we call S, is where you're trying to cram the entirety of the 

sentence you have to translate. S is usually only a few hundred units (read: 

floating point numbers) long - the more you try to force into this fixed 

dimensionality vector, the more lossy the neural network is forced to 

be. 

• Second, 

• the deeper a neural network is, the harder it is to train. For recurrent 

neural networks, the longer the sequence is, the deeper the neural network 

is along the time dimension. This results in vanishing gradients. Even with 

RNNs specifically made to help prevent vanishing gradients, such as the 

LSTM, this is still a fundamental problem.



Attention based encoder-decoder



The deep is for deep learning



Residuals are the new hotness



Putting it all together



BACKUPS



Score/probability

• We score each word 𝑘 given a hidden state 𝑧𝑖 such that
𝑒 𝑘 = 𝑤𝑘

𝑇𝑧𝑖 + 𝑏𝑘
where 𝑤𝑘 and 𝑏𝑘 are the target word vector and a bias, respectively. 

• The dot product between two vectors. The dot product is larger 

when the target word vector 𝑤𝑘 and the decoder’s internal state 

𝑧𝑖 are similar to each other, and smaller otherwise.


