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Semantic segmentation

- Building/road/sky/object/grass/water/tree

Clement Farabet, Camille Couprie, Laurent Najman and Yann LeCun: Learning Hierarchical Features for Scene Labeling, IEEE Transactions
on Pattern Analysis and Machine Intelligence, August, 2013



Object tracking

Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang, "Object Tracking Benchmark",
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015
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ORB-SLAM In the KITTI dataset

- ORB-SLAM2 is a real-time SLAM library
for Monocular, Stereo and RGB-D cameras that computes the
camera trajectory and a sparse 3D reconstruction

ORB-SLAM

Raul Mur-Artal, J. M. M. Montiel and Juan D. Tardés

{raulmur, josemari, tardos} @unizar.es

‘i ™ en Inge.nie'ria. ;;Ara.gé.n '.&' Unlver5|dad
§ Universidad Zaragoza Al Zaragoza




COMPUTER VISION
IMAGE UNDERSTANDING ...




Why understanding images is hard

Very many

sources of - Image

variability

From J.Winn, MSR



B
Sources of image variability

Scene type Street scene

Scene geometry

From J.Winn, MSR



B
Sources of image variability

Street scene

Scene type
Scene geometry Sky Sidewalk Bicycle Bollard
Object classes Building>3 Treex3 Carx5
Road Personx4 Bench
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From J.Winn, MSR
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Sources of image variability

Street scene

Scene type
Scene geometry Sky Sidewalk Bicycle Bollard
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Sources of image variability

Street scene

Scene type »
Scene geometry
Object classes -
Object position building
building

Object orientation

El

Object shape

car

0
o
=

car

|
0aud

sidewalk
bollard

bench

From J.Winn, MSR



B
Sources of image variability

Scene type cky

Scene geometry

Object classes tree building

Object position building

building

Object orientation
Object shape

car

Depth/occlusions

car

road
sidewalk

bollar

From J.Winn, MSR



Sources of image variability

Scene type

Scene geometry
Object classes
Object position
Object orientation
Object shape
Depth/occlusions

Obiject appearance

building

building

sidewalk

From J.Winn, MSR



Sources of image variability

Scene type ‘

Scene geometry
Object classes

Object position

Object orientation

Object shape
Depth/occlusions
Object appearance |
lllumination §

Shadows

From J.Winn, MSR
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Sources of image variability
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Scene type ‘

Scene geometry
Obiject classes

Object position

Object orientation
Obiject shape
Depth/occlusions
Object appearance |
lllumination

Shadows

Motion blur

Camera effects

From J.Winn, MSR
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Computer vision problems

Scene type

Scene geometry
Obiject classes
Obiject position
Object orientation
Obiject shape
Depth/occlusions
Obiject appearance
lllumination

Shadows

Motion blur

Camera effects



Now you see me
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Moravec's Paradox

- The main lesson of 35 years of Al research is that the
hard problems are easy and the easy problems are
hard. The mental abilities of a four-year-old that we take
for granted — recognizing a face, lifting a pencil, walking
across a room, answering a question — in fact solve some
of the hardest engineering problems ever conceived... As
the new generation of intelligent devices appears, it will be
the stock analysts and petrochemical engineers and parole
board members who are in danger of being replaced by
machines. The gardeners, receptionists, and cooks are
secure in their jobs for decades to come.

- Pinker, Steven (September 4, 2007) [1994], The Language Instinct,
Perennial Modern Classics, Harper, ISBN 0-06-133646-7




MACHINE LEARNING

Neural network=> =41 6. 2
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LINEAR PERCEPTRON







Basic model

- The first learning machine: the Perceptron (built in 1960)
- The perceptron was a linear classifier

A | ®

y = sign(w'x + b)

_ )+ it wyxg Fwoxp + o+ wpx +D >0
—1 otherwise



Linear Perceptron
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- The goal: Find the best line (or hyper-plane) to separate the training
data.
- In two dimensions, the equation of the line is given by a line:
cax+by+c=0
- A better notation for n dimensions: treat each data point and the coefficients as
vectors. Then the equation is given by:

cwW'x+b=0
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FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark
line could serve as a decision boundary of our classifier. Overall classification error on
the data shown is lower than if we use only one feature as in Fig. 1.3, but there will
still be some errors. From: Richard O. Duda, Peter E. Hart, and David C. Stork, Pattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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Artificial Neuron

Dendrites

wTx @ gwx)
20,

Activation function (non-linear)



Mark | Perceptron

Frank Rosenblatt

400 pixel image input

Weights encoded in potentiometers

Weight updated by electric motors
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Ehe New Pork Times

NEW NAVY DEVICE LEARNS BY DOING
July 8, 1958
“The Navy revealed the embryo of an electronic

computer today that it expects will be able to walk,
talk, see, write, reproduce itself and be conscious of

its existence... Dr. Frank Rosenblatt, a research
psychologist at the Cornell Aeronautical Laboratory,
Buffalo, said Perceptrons might be fired to the
planets as mechanical space explorers”

- e

Lars

IIII- Massachusells

Inertate of f . Course 6.5094: Lex Fridman: Website: January
I I 1::..:,.,..:,.., RE erences: [45] Deep Learning for Self-Driving Cars fridman@mit_edu cars.mit.edu 2017



Artificial Neuron

- However, it cannot solve non-linearly-separable problems

O | O

O | O




MULTI-LAYER PERCEPTRON




Input(s)

Input Layer Hidden Layer(s) Output Layer

Qutput(s)



L
Multi-layer Neural Network

- 15t Layer
* hy = g(Wix+by)

- 2"d Layer

S I -
e -
hy_4

- Output layer
- 0 = softmax(W,h,_; + by)



Activation function g(-)

10

- Sigmoid activation function
- Squashes the neuron’s pre-activation between 0 and 1
- Always positive/Bounded/Strictly increasing
1

9t = 1+ exp(—x) k

08

06

L L L |
4 2

- Hyperbolic tangent (“‘tanh’’) activation function
- Squashes the neuron’s pre-activation between -1 and 1
- Bounded/Strictly increasing 10

05 |-

exp(x) — exp(—x)

g(x) = tanh(x) =

-/05

.10 -

exp(x) + exp(—x) —



Activation function g(-)

- Rectified linear activation function (ReLU)
- Bounded below by 0
- Not upper bounded
- Strictly increasing

g(a) = rectlin(a) = max(0,a) _“,ﬁ ................. .................. .................. ................ ]
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Soft-max activation function at the output

- For multi-class classification
- We need multiple outputs (1 output per class)

- We use the softmax activation function at the output

[ exp(ag) ]
Y.cexp(ac)
exp(a,)

O(a) = SOftmax(a) = Zc eX:p(aC)

exp(a)
Y cexp(ac).

- strictly positive

< sums to one b

01]*]:(a,b,c)—>( e’ c

eC
ed+ebtec’ ed+ebteC’ edtebteC



Example (character recognition example)

p(c ="0"x)

______________ p(c ="1"|x)
' 140 inputs ‘<

p(c="9"Ix)

x € {0’1}1O><14

Layer 1 Layer 2
with 12 perceptrons  with 10 perceptrons

140%12 Eachhaving 12 inputs
Wy en W, € R12x10
bl = mlz 2

b, € R1°



TRAINING OF MULTI-LAYER
PERCEPTRON




Training: Loss function

X

>

Y

- Cross entropy (classification)
‘ ylj; € [Oll]N;Zizlyi — 1;Zi=1}7i =1
- L =—3ylogy;

- Square Euclidean distance (regression)
- y,9 € RN
1 ~
c L=-%0i —5)°



L
Cross Entropy (0l Al

- Label:

* [y1 ¥2 y31=11,0,0] : class 1
- [y1 y2 v3]1=10,1,0] : class 2

- [v1 y2 3] =10,0,1] : class 3 L = _Zyilogj;i

- o[ A]
- Network output: ¥y =[9; ¥, y3]= [0.3,0.6,0.1]
 Loss
 If ground truth is class 1 (i.e., y = [1,0,0]) = —log 0.3 = 1.204
* If ground truth is class 2 (i.e., y = [0,1,0]) = —log 0.6 = 0.511
 If ground truth is class 3 (i.e., y = [0,0,1]) = —log 0.1 = 2.303
- Network output: y = [y; ¥, V53 ]=[0.01, 0.98, 0.01]
+ Loss
 Ifground truthisclass 1 (i.e., y =[1,0,0]) = —log 0.01 = 4.605

 If ground truth is class 2 (i.e., y = [0,1,0]) = —log 0.98 = 0.020
« If ground truth is class 3 (i.e., y =[0,0,1]) = —log 0.01 = 4.605



Forward/Backward propagation

Chain rule




F-PROP
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B-PROP
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Forward/Backward propagation

x —>Q y=gWx+b) y
a7
oL _ oL dy Forward propagation
0x 0dy O0x
\ oL dy Oy oL
0x ox oW dy
Y 0L 0L dy
oW~ dy ow

Backward propagation



FEED-FORWARD NEURAL
NETWORK (G| Al)




Forward propagation

x 1 — 8251 -
e*l4e*2
- o
2 _e*l4-e*2 -
The 1st hidden layer ~ The 2" hidden layer Output

y1 = p(wi1x1 + wisxo + by)
Yo = @(wo121 + Wogxs + bo)

y3 = p(ws1x1 + w3oxs + b3)

Z1 = U11Y1 + U12Y2 + U13Y3 + C1

Zo = U21Y1 + U22Y2 + U23Y3 + C2




Forward propagation matrix repr.

L]

L=

The 1st

hidden layer

The 2" hidden layer

e*l4e*2

e*2
L e*l4-e%2 4

Output
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Woo U23




BACK-PROPAGATION
ALGORITHM (G| Al)




Forward propagation
(block-based representation)
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Backward propagation; 29 layer
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Backward propagation; 29 layer

* Error propagation
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Backward propagation; 15t layer
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Backward propagation; 15t layer
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TENSORFLOW INTRODUCTION




What is TensorFlow?

- TensorFlow is a deep learning library open-sourced by Google.

- TensorFlow provides primitives for defining functions on
tensors and automatically computing their derivatives.

- Tensor is a multidimensional array of numbers

?TensorFIow



Design Choice

- Network structures
- The mathematical relationship between inputs and outputs

- Loss function
- Optimization
- Optimization methods
- Hyper-parameters (Batch size, Learning rate, ... )



Classification vs Regression

Classification

-

Color

q =1

Apple

Orange

Regression
N\ ~N
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e — Price
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The variable we are trying to predict is

DISCRETE

J

The variable we are trying to predict is
CONTINUOUS



MNIST dataset (classification example)

- handwritten digits

- a training set of 60,000 examples

- 28x28 images
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. CLASSIFIER PREPROCESSING TEST ERROR Reference -

RATE (%)

Linear Classifiers

linear classifier (1-layer NN) none 12.0||LeCun et al. 1998
linear classifier (1-layer NN) deskewing 84| LeCun et al. 1998
pairwise linear classifier deskewing 7.6||LeCun et al. 1998

Non-Linear Classifiers
40 PCA + quadratic classifier none 3.3||LeCun et al. 1998
1000 RBF + linear classifier none 3.6||LeCun et al. 1998

SVMs

SVM, Gaussian Kernel Hnone ” 1.4H
‘SVM deg 4 polynomial Hdeskewing ” l.lH LeCun et al. 1998 ‘
‘Reduced Set SVM deg 5 polynomial Hdeskewing ” l.OH LeCun et al. 1998 ‘
‘Vir‘tual SVM deg-9 poly [distortions] Hnone ” O.SH LeCun et al. 1998 ‘
‘Vir‘tual SVM, deg-9 poly, 1-pixel jittered Hnone ” 0.68H DeCoste and Scholkopf, MU 2002 ‘
‘Vir‘tual SVM, deg-9 poly, 1-pixel jittered Hdeskewing ” O.BSH DeCoste and Scholkopf, MU 2002 ‘
‘Vir‘tual SVM, deg-9 poly, 2-pixel jittered Hdeskewing ” O.SGH DeCoste and Scholkopf, MU 2002 ‘
‘ Neural Nets ‘
‘2-|ayer NN, 300 hidden units, mean square error Hnone ” 4.7’H LeCun et al. 1998 ‘
|2-layer NN, 300 HU, MSE, [distortions] | none | 36)|LeCun et al. 1998 |
|2-layer NN, 300 HU | deskewing | 16)|LeCun et al. 1998 |
‘2—|ayer NN, 1000 hidden units Hnone ” 4.5H LeCun et al. 1998 ‘
|2-layer NN, 1000 HU, [distortions] |none | 3.8)|LeCun et al. 1998 |
3-layer NN, 300+100 hidden units none 3.05(||LeCun et al. 1998
3-layer NN, 300+100 HU [distortions] none 2.5||LeCun et al. 1998
3-layer NN, 500+150 hidden units none 2.95(|LeCun et al. 1998
3-layer NN, 500+150 HU [distortions] none 2.45| LeCun et al. 1998
3-layer NN, 500+300 HU, softmax, cross entropy, weight hone 1.53 || Hinton, unpublished, 2005
decay
2-layer NN, 800 HU, Cross-Entropy Loss none 1.6||Simard et al., ICDAR 2003
2-layer NN, 800 HU, cross-entropy [affine distortions] none 1.1||Simard et al., ICDAR 2003

2-layer NN, 800 HU, MSE [elastic distortions] none 0.9 Simard et al. ICDAR 2003




| Convolutional nets ‘
|Convo|utiona| net LeNet-1 Hsubsampling to 16x16 pixels ” 1.7||LeCun et al. 1998 ‘
|Conv0|utiona| net LeNet-4 Hnone ” l.l”LeCun et al. 1998 ‘
Convolutional net LeNet-4 with K-NN instead of last none 110 Lecun ot &l 1998

layer -

Convolutional net LeNet-4 with local learning instead of none 110l Lecun ot al 1998

last layer -

Convolutional net LeNet-5, [no distortions] none 0.95||LeCun et al. 1998

|Convo|utiona| net LeNet-5, [huge distortions] Hnone ” 0.85||L9Cun et al. 1998 ‘
|Conv0|utiona| net LeNet-5, [distortions] Hnone ” O.8||LeCun et al. 1998 ‘
|Conv0|utiona| net Boosted LeNet-4, [distortions] Hnone ” O.?”LeCun et al. 1998 ‘
Trainable feature extractor + SVMs [no distortions] none 0.83||Lauer et al. Pattern Recognition 40-6, 2007
Trainable feature extractor + SVMs [elastic distortions] none 0.56||Lauer et al., Pattern Recognition 40-6, 2007
Trainable feature extractor + SVMs [affine distortions] none 0.54||Lauer et al., Pattern Recognition 40-6, 2007
unsupervised sparse features + SVM, [no distortions] none 0.59||Labusch et al., IEEE TNN 2008

|Convo|utiona| net, cross-entropy [affine distortions] Hnone ” 0.6||Simard et al, ICDAR 2003 ‘
|Convo|utiona| net, cross-entropy [elastic distortions] Hnone ” O.4||Simard et al, ICDAR 2003 ‘
||arge conv. net, random features [no distortions] Hnone ” 0.89||Ranzato et al., C\VPR 2007 ‘
||arge conv. net, unsup features [no distortions] Hnone ” D.62||Ranzato et al, CVPR 2007 ‘
large conv. net, unsup pretraining [no distortions] none 0.60||Ranzato et al., NIPS 2006

large conv. net, unsup pretraining [elastic distortions] none 0.39|(Ranzato et al, NIPS 2006

large conv. net, unsup pretraining [no distortions] none 0.53||Jarrett et al., ICCY 2009

Iargefldee.p conv. net, 1-20-40-60-80-100-120-120-10 none 035l Ciresan et al. DCAI 2011

[elastic distortions]

committee of 7 conv. net, 1-20-P-40-P-150-10 [elastic |z o oalization 0.27 +-0.02||Ciresan et al. ICDAR 2011

distartions]

cc.Jmml.ttee of 35 conv. net, 1-20-P-40-P-150-10 [elastic width normalization 0.23||Ciresan et al. CVPR 2012

distortions]




Classification Example Code

- Classification Example

= s:RlOX784



TensorFlow_NN_1st_example.html

Classification Example Code

784 = 282
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Regression Example Code

- Regression Example


TF_linear_regression_example.html

VALIDATION
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Validation set approach

- Divide the data in three parts:

- training, validation (development), and test. We use the train and
validation data to select the best model and the test data to assess the
chosen model.

World

World

valid

training .o,

Samples




Validation set approach

- Training set
- To fit the models

- Validation set
- To estimate prediction error for model selection

- Test set
- To assess of the generalization error of the final chose model

Validation




k-fold cross validation

- We partition the data into K parts. For the k —th part, we fit the
model to the other K — 1 parts of the data, and calculate the
prediction error of the fitted model when predicting the kth part
of the data. We do this for k = 1,2, ---, K and combine the K
estimates

N
|
~



k-Fold cross validation




| eave-one-out cross validation

1213 M




Development Cycle

Model selection

Development cycle/time
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Conventional approach

- Image classification

> “Motocycle”

Slides from “Andrew Ng”



Why is this hard?

But the camera sees this:

Slides from “Andrew Ng”



Feature representation

+ Motorbikes
Raw image “Non”-Motorbikes

(‘“4\:9

~

Slides from “Andrew Ng”



Feature representation

—handlebars

3 _ Feature
J12) @I wheel representation

E.g., Does it have Handlebars? Wheels?

Input

+ Motorbikes

Raw image Non”-Motorbikes Features

Handlebars

Slides from “Andrew Ng”



Example of Feature Representation

But, ... we don’t have a handlebars detector. So, researchers try to hand-
design features to capture various statistical properties of the image

feature
vector

Find edges Sum up edge
at four strength in
orientations  each quadrant

Slides from “Andrew Ng”



Feature representation

‘ Feature ‘ Classification

‘ Representation ' Algorithm

Slides from “Andrew Ng”



Computer vision features

Input Image

«— Overlapping Blocks

N < N\

Gradient Image b, TN TT

Local Normahzation

ESNNEE=S N 072
ESNNEE
ESNEEE

: i Ry |-

INIIAE= SN 72

SNMHRE :

gaummm

Textons

Normalized patch

Slides from “Andrew Ng”



Audio features




Traditional pattern recognition

- Fixed/engineered feature + trainable classifier

Feature
Extractor




CASE STUDY:
PEDESTRIAN DETECTOR
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Detection problem - (binary) classification problem

- Sliding window scheme




ely classitied
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Each window




Training data

- 64x128 images of humans cropped from a varied set of personal
photos

- Positive data — 1239 positive window examples (reflections->2478)




Training

- A preliminary detector
- Trained with (2478) vs (12180) samples

- Retraining
- With augmented data set
- initial 12180 + hard examples

- Hard examples
- 1218 negative training photos are searched exhaustively for false positive



Feature: histogram of oriented gradients (HOG)

_ dominant
Image direction HOG

» tile window into 8 x 8 pixel cells

* each cell represented by HOG

frequency

orientation

Feature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024
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Averaged examples




Algorithm

Training (Learning)

* Represent each example window by a HOG feature vector

.-

* Train a SVM classifier

x; € R, with d = 1024

Testing (Detection)

+ Sliding window classifier
flz)=w'x+b



o, RO TP s

Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR'05). Vol. 1. IEEE, 2005.




Learned model
f(x) = w'x+0

¥
R 1
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http://playground.tensorflow.org/

Q-

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%

Noise: 0

Batch size: 10
—e

REGENERATE

Tinker With a Neural Network Right Here in Your Browser.

Epoch

000,000

FEATURES

Which properties do
you want to feed in?

Don't Worry, You Can't Break It. We Promise.

Leaming rate

0.03

Y=

4 neurons

4

Activation

Tanh

- None

2 HIDDEN LAYERS

Regularization

L=

2 neurons

i
4

Regularization rate

1]

QUTPUT

Test loss 0.514
Training loss 0.504

Colors shows
data, neuron and
weight values.

[0 Show test data

F

Bl

Preblem type

Classification

[ Discretize output
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Visualization MNIST with t-SNE

>

Visualizing MINIST with t-SNE




Why are Deep Architectures hard to train?

- Vanishing gradient problem in back-
propagation.

- Local Optimum (saddle points?) Issue in
Neural Nets

- For Deep Architectures, back-propagation is

apparently getting a local optimum (saddle
points?) that does not generalize well
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oo
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o

/wﬂl wBl |W\C 0y
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Empirical Results: Poor performance of Backpropagation on
Deep Neural Nets [Erhan et al., 2009]

- MNIST digit classification task; 400 trials (random seed)
- Each layer: initialize weights with random numbers

- Although L + 1 layers is more expressive, worse error than L
layers.

test classification error (perc)

number of layers



AI Winters Smaller episodes:
* 1966: the failure of machine translation
Two major episodes: + 1970: the abandonment of connectionism
« 1574-80 + 1971-75: DARPA's frustration with the Speech
. 1987-93 Understanding Research program

* 1973: the large decrease in Al research in the UK
in response to the Lighthill report.

* 1973-74: DARPA's cutbacks to academic Al
research in general

* 1987: the collapse of the Lisp machine market

* 1988: the cancellation of new spending on Al by
the Strategic Computing Initiative

* 1993: expert systems slowly reaching the bottom

* 1990s: the quiet disappearance of the fifth-
generation computer project's original goals.

“In no part of the field have discoveries made so far
produced the major impact that was then promised.”

II I L1 l'"m:m:fm‘ 'F . Course 6.5094: Lex Fridman: Website: lanuary
I l n=titute RE erences: [18] Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017



An example

Preprocessing

v

Feature extraction

t |

Classification

/N

"salmon" "sea bass"




Feature extraction

Width feature

salmon sea bass

]

count

1 _\_l
1
L . . length

5 10 15 20 25
f*

FIGURE 1.2. Histograms for the length feature for the two categories. No single thresh-

old value of the length will serve to unambiguously discriminate between the two cat-

egories; using length alone, we will have some errors. The value marked /* will lead to

the smallest number of errors, on average. From: Richard O. Duda, Peter E. Hart, and

David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Lightness feature

count

4 salmon sea bass

12

lightness

Hr-=--

2 4 6 8 10

FIGURE 1.3. Histograms for the lightness feature for the two categories. No single
threshold value x* (decision boundary) will serve to unambiguously discriminate be-
tween the two categories; using lightness alone, we will have some errors. The value x*
marked will lead to the smallest number of errors, on average. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John
Wiley & Sons, Inc.
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