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Semantic segmentation

• Building/road/sky/object/grass/water/tree

Clement Farabet, Camille Couprie, Laurent Najman and Yann LeCun: Learning Hierarchical Features for Scene Labeling, IEEE Transactions 

on Pattern Analysis and Machine Intelligence, August, 2013



Object tracking

Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang, "Object Tracking Benchmark", 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015



Visual SLAM
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ORB-SLAM in the KITTI dataset

• ORB-SLAM2 is a real-time SLAM library 

for Monocular, Stereo and RGB-D cameras that computes the 

camera trajectory and a sparse 3D reconstruction



COMPUTER VISION

IMAGE UNDERSTANDING …



Why understanding images is hard

Image

Very many 

sources of 

variability

From J. Winn, MSR



Sources of image variability
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From J. Winn, MSR
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Sources of image variability

Scene type

Scene geometry

Object classes

Object position

Object orientation

Object shape

Depth/occlusions

Object appearance

Illumination

Shadows

Motion blur

Camera effects

From J. Winn, MSR



Computer vision problems
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Now you see me





















Moravec’s Paradox

• The main lesson of 35 years of AI research is that the 

hard problems are easy and the easy problems are 

hard. The mental abilities of a four-year-old that we take 

for granted – recognizing a face, lifting a pencil, walking 

across a room, answering a question – in fact solve some 

of the hardest engineering problems ever conceived... As 

the new generation of intelligent devices appears, it will be 

the stock analysts and petrochemical engineers and parole 

board members who are in danger of being replaced by 

machines. The gardeners, receptionists, and cooks are 

secure in their jobs for decades to come.

• Pinker, Steven (September 4, 2007) [1994], The Language Instinct, 

Perennial Modern Classics, Harper, ISBN 0-06-133646-7



MACHINE LEARNING
Neural network을중심으로
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LINEAR PERCEPTRON



뉴런: 신경망의기본단위



Basic model

• The first learning machine: the Perceptron (built in 1960)

• The perceptron was a linear classifier 

𝑦 = sign(wTx + b)

𝑦 =  
+1 if 𝑤1𝑥1 + 𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 + 𝑏 > 0
−1 otherwise



Linear Perceptron

• The goal: Find the best line (or hyper-plane) to separate the training 
data. 

• In two dimensions, the equation of the line is given by a line:

• 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0

• A better notation for n dimensions: treat each data point and the coefficients as 
vectors. Then the equation is given by:

• w⊤x + b = 0

Class (+1)Class (-1)



예시: 연어와농어의구별



예시: 연어와농어의구별

밝기 (𝑙)

폭 (𝑤) 7.3𝑙 + 3.4𝑤 = 100

𝑙

𝑤

7.3𝑙 + 3.4𝑤 ≥ 100

7.3𝑙 + 3.4𝑤 < 100

농어

연어
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예시: 연어와농어의구별

𝑙

𝑤

7.3 × 𝑙

3.4 × 𝑤

Σ

100

연어/농
어



Artificial Neuron

𝑤𝑇𝑥 𝑔(𝑤𝑇𝑥)

Activation function (non-linear)





Artificial Neuron

• However, it cannot solve non-linearly-separable problems



MULTI-LAYER PERCEPTRON





Multi-layer Neural Network

• 1st Layer

• h1 = 𝑔(𝑊1x + 𝑏1)

• 2nd Layer

• h2 = 𝑔(𝑊2h1 + 𝑏2)

• …..

• Output layer

• o = softmax(Wnhn−1 + bn)

=

hk

hk−1

𝑊𝑘
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Activation function 𝑔(⋅)

• Sigmoid activation function

• Squashes the neuron’s pre-activation between 0 and 1

• Always positive/Bounded/Strictly increasing

• Hyperbolic tangent (‘‘tanh’’) activation function

• Squashes the neuron’s pre-activation between -1 and 1

• Bounded/Strictly increasing

𝑔 𝑥 =
1

1 + exp(−𝑥)

𝑔 𝑥 = tanh 𝑥 =
exp 𝑥 − exp(−𝑥)

exp(𝑥) + exp(−𝑥)



Activation function 𝑔(⋅)

• Rectified linear activation function (ReLU)

• Bounded below by 0

• Not upper bounded

• Strictly increasing

𝑔 𝑎 = rectlin 𝑎 = max 0, 𝑎



Soft-max activation function at the output

• For multi-class classification

• We need multiple outputs (1 output per class)

• We use the softmax activation function at the output

• strictly positive

• sums to one

𝑂 𝐚 = softmax 𝐚 =

exp 𝑎1
 𝑐 exp 𝑎𝑐
exp 𝑎2

 𝑐 exp 𝑎𝑐
⋮
⋮

exp 𝑎𝑐
 𝑐 exp 𝑎𝑐

예시: 𝑎, 𝑏, 𝑐 →
𝑒𝑎

𝑒𝑎+𝑒𝑏+𝑒𝑐
,

𝑒𝑏

𝑒𝑎+𝑒𝑏+𝑒𝑐
,

𝑒𝑐

𝑒𝑎+𝑒𝑏+𝑒𝑐



Example (character recognition example)

𝑥 ∈ 0,1 10×14

𝑝(𝑐 = "0"|𝑥)

𝑝(𝑐 = "1"|𝑥)

𝑝(𝑐 = "9"|𝑥)

⋮

140 inputs

Layer 1

with 12 perceptrons

Layer 2

with 10 perceptrons

Each having 12 inputs
𝑊1 ∈ ℜ140×12

𝑊2 ∈ ℜ12×10

so
ftm

ax

𝑏1 ∈ ℜ12

𝑏2 ∈ ℜ10



TRAINING OF MULTI-LAYER 

PERCEPTRON



Training: Loss function

• Cross entropy (classification)

• 𝑦,  𝑦 ∈ 0,1 𝑁,  𝑖=1𝑦𝑖 = 1, 𝑖=1  𝑦𝑖 = 1

• 𝐿 = − 𝑦𝑖log  𝑦𝑖

• Square Euclidean distance (regression)

• 𝑦,  𝑦 ∈ ℜ𝑁

• 𝐿 =
1

2
 𝑦𝑖 −  𝑦𝑖

2

Error



Cross Entropy (예시)

• Label: 

• [𝑦1 𝑦2 𝑦3] = [1,0,0] : class 1

• [𝑦1 𝑦2 𝑦3] = [0,1,0] : class 2

• [𝑦1 𝑦2 𝑦3] = [0,0,1] : class 3

• 예시
• Network output:  𝑦 = [ 𝑦1  𝑦2  𝑦3 ] = [0.3, 0.6, 0.1]

• Loss

• If ground truth is class 1 (i.e., y = [1,0,0]) → −log 0.3 = 1.204 

• If ground truth is class 2 (i.e., y = [0,1,0]) → −log 0.6 = 0.511

• If ground truth is class 3 (i.e., y = [0,0,1]) → −log 0.1 = 2.303 

• Network output:  𝑦 = [ 𝑦1  𝑦2  𝑦3 ]= [0.01, 0.98, 0.01]

• Loss

• If ground truth is class 1 (i.e., y = [1,0,0]) → −log 0.01 = 4.605

• If ground truth is class 2 (i.e., y = [0,1,0]) → −log 0.98 = 0.020

• If ground truth is class 3 (i.e., y = [0,0,1]) → −log 0.01 = 4.605

𝐿 = − 𝑦𝑖log  𝑦𝑖



Forward/Backward propagation

• Chain rule

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝜂
𝑑𝐿

𝑑𝑊







Forward/Backward propagation

Forward propagation

Backward propagation

𝑊

y

𝜕𝐿

𝜕𝑦

𝜕𝐿

𝜕x

𝜕𝐿

𝜕𝑊
=
𝜕𝐿

𝜕y

𝜕y

𝜕𝑊

y = 𝑔(𝑊x + 𝑏)

𝜕y

𝜕x

𝜕y

𝜕𝑊

𝜕𝐿

𝜕x
=

𝜕𝐿

𝜕y
⋅
𝜕y

𝜕x

x



FEED-FORWARD NEURAL 

NETWORK (예시)
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Forward propagation matrix repr.
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BACK-PROPAGATION 

ALGORITHM (예시)
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(block-based representation)
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Backward propagation; 2nd layer
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Layer 1 Layer 2

• Error propagation



Backward propagation; 2nd layer
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Backward propagation; 2nd layer

• Weight update• Error propagation
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Backward propagation; 1st layer
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Backward propagation; 1st layer

• Error propagation

Ground 
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Layer 1 Layer 2

• Weight update



TENSORFLOW실습



TENSORFLOW INTRODUCTION



What is TensorFlow?

• TensorFlow is a deep learning library open-sourced by Google.

• TensorFlow provides primitives for defining functions on 

tensors and automatically computing their derivatives.

• Tensor is a multidimensional array of numbers



Design Choice

• Network structures

• The mathematical relationship between inputs and outputs 

• Loss function 

• Optimization

• Optimization methods

• Hyper-parameters (Batch size, Learning rate, … ) 



Classification vs Regression
Classification Regression

?
Expected

Price

1600 sq ft

Color

Weight

Apple

Orange

?

The variable we are trying to predict is

DISCRETE

The variable we are trying to predict is

CONTINUOUS

Housing

Prices



MNIST dataset (classification example)

• handwritten digits

• a training set of 60,000 examples

• 28x28 images 







Classification Example Code

• Classification Example

𝑊 ∈ ℜ10×784=

TensorFlow_NN_1st_example.html


Classification Example Code

=

0

0

1

2

3

4

5

6

7

8

9

1

784 = 282

28

28



Regression Example Code

• Regression Example

TF_linear_regression_example.html


VALIDATION
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Validation set approach

• Divide the data in three parts: 

• training, validation (development), and test. We use the train and 

validation data to select the best model and the test data to assess the 

chosen model.

WorldWorld

Samples training
valid

ation test



Validation set approach

• Training set

• To fit the models

• Validation set

• To estimate prediction error for model selection

• Test set

• To assess of the generalization error of the final chose model

Train Validation Test



k-fold cross validation

• We partition the data into 𝐾 parts. For the 𝑘 −th part, we fit the 

model to the other 𝐾 − 1 parts of the data, and calculate the 

prediction error of the fitted model when predicting the 𝑘th part 

of the data. We do this for 𝑘 = 1,2,⋯ ,𝐾 and combine the 𝐾
estimates

𝐾 = 7



k-Fold cross validation

WorldWorld

Samples



Leave-one-out cross validation



전통적인접근법
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Conventional approach 

• Image classification

“Motocycle”

Slides from “Andrew Ng”



Why is this hard?

Slides from “Andrew Ng”



Feature representation

Slides from “Andrew Ng”

Classification

Algorithm



Feature representation

Classification

Algorithm

Slides from “Andrew Ng”



Example of Feature Representation

• But, … we don’t have a handlebars detector. So, researchers try to hand-

design features to capture various statistical properties of the image

Slides from “Andrew Ng”



Feature representation

Slides from “Andrew Ng”

Classification

Algorithm



Computer vision features

Slides from “Andrew Ng”



Audio features



Traditional pattern recognition

• Fixed/engineered feature + trainable classifier



CASE STUDY:

PEDESTRIAN DETECTOR
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Detection problem  (binary) classification problem

• Sliding window scheme



Each window is separately classified



• 64x128 images of humans cropped from a varied set of personal 

photos
• Positive data – 1239 positive window examples (reflections->2478)

• Negative data – 1218 person-free training photos (12180 patches)

Training data



• A preliminary detector 

• Trained with (2478) vs (12180) samples

• Retraining

• With augmented data set 

• initial 12180 + hard examples

• Hard examples

• 1218 negative training photos are searched exhaustively for false positive

Training



Feature: histogram of oriented gradients (HOG)





Averaged examples



Algorithm



Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." 2005 IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition (CVPR'05). Vol. 1. IEEE, 2005.



Learned model



BACKUPS



Why are Deep Architectures hard to train?

• Vanishing gradient problem in back-

propagation.

• Local Optimum (saddle points?) Issue in 

Neural Nets

• For Deep Architectures, back-propagation is 

apparently getting a local optimum (saddle 

points?) that does not generalize well



Empirical Results: Poor performance of Backpropagation on 

Deep Neural Nets [Erhan et al., 2009]

• MNIST digit classification task; 400 trials (random seed)

• Each layer: initialize weights with random numbers

• Although 𝐿 + 1 layers is more expressive, worse error than 𝐿
layers. 





113

An example



Feature extraction

Width feature Lightness feature

114



Classification

Simple model Complex model

115


