COMPUTER VISION

					Tasks						
					ADAS						
					Self Driving						
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory	
Methods	Traditional	Non-machine Learning			GPS, SLAM		Optimal control				
		Machine-Learning based method	Supervised	SVM MLP		Pedestrian detection (HOG+SVM)					
	Deep-Learning based			CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning				
				RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning	Behavior Prediction/ Driver identificati on		*	
				DNN					*	*	
			Reinforcement				*				
			Unsupervised							*	

Vision tasks

Semantic segmentation

Building/road/sky/object/grass/water/tree

Clement Farabet, Camille Couprie, Laurent Najman and Yann LeCun: Learning Hierarchical Features for Scene Labeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, August, 2013

Object tracking

Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang, "Object Tracking Benchmark", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015

Visual SLAM

					Tasks						
					ADAS						
						Self Driving					
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory	
Methods	Traditional	Non-machine Learning		GPS, SLAM		Optimal control					
		Machine-Learning based method	Supervised	SVM MLP		Pedestrian detection (HOG+SVM)					
	Deep-Learning based			CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning				
				RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning	Behavior Prediction/ Driver identificati on		*	
				DNN					*	*	
			Reinforcement				*				
			Unsupervised							*	

ORB-SLAM in the KITTI dataset

• ORB-SLAM2 is a real-time SLAM library for **Monocular**, **Stereo** and **RGB-D** cameras that computes the camera trajectory and a sparse 3D reconstruction

Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós

{raulmur, josemari, tardos} @unizar.es

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

COMPUTER VISION IMAGE UNDERSTANDING ...

Why understanding images is hard Very many sources of Image variability

Street scene Scene type Bollard Sky Sidewalk Bicycle Scene geometry Building×3 Tree×3 Car×5 Object classes Road Person×4 Bench

Scene type Scene geometry **Object classes Object** position **Object** orientation Object shape Depth/occlusions **Object** appearance Illumination **Shadows**

Scene type Scene geometry **Object classes Object** position **Object** orientation Object shape Depth/occlusions Object appearance Illumination **Shadows**

Scene type Scene geometry **Object classes Object** position **Object** orientation Object shape Depth/occlusions Object appearance Illumination Shadows Motion blur **Camera effects**

Computer vision problems

Scene type Scene geometry **Object classes Object** position **Object** orientation **Object** shape Depth/occlusions **Object** appearance Illumination **Shadows** Motion blur Camera effects

Now you see me

Moravec's Paradox

- The main lesson of 35 years of AI research is that the hard problems are easy and the easy problems are hard. The mental abilities of a four-year-old that we take for granted – recognizing a face, lifting a pencil, walking across a room, answering a question – in fact solve some of the hardest engineering problems ever conceived... As the new generation of intelligent devices appears, it will be the stock analysts and petrochemical engineers and parole board members who are in danger of being replaced by machines. The gardeners, receptionists, and cooks are secure in their jobs for decades to come.
 - Pinker, Steven (September 4, 2007) [1994], The Language Instinct, Perennial Modern Classics, Harper, ISBN 0-06-133646-7

MACHINE LEARNING

Neural network을 중심으로

					Tasks						
					ADAS						
					Self Driving						
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory	
Methods	Traditional	Non-machine Learning			GPS, SLAM		Optimal control				
		Machine-Learning based method	Supervised	MLP		Pedestrian detection (HOG+SVM)					
	Deep-Learning base			CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning				
				RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning				
				DNN							
	Ď		Reinforcement								
			Unsupervised								

LINEAR PERCEPTRON

뉴런: 신경망의 기본 단위

Basic model

- The first learning machine: the Perceptron (built in 1960)
- The perceptron was a linear classifier

$$y = \operatorname{sign}(w^{\mathrm{T}}x + b)$$

$$y = \begin{cases} +1 & \text{if } w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b > 0 \\ -1 & \text{otherwise} \end{cases}$$

- The goal: Find the best line (or hyper-plane) to separate the training data.
 - In two dimensions, the equation of the line is given by a line:

• ax + by + c = 0

• A better notation for *n* dimensions: treat each data point and the coefficients as vectors. Then the equation is given by:

•
$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b} = \mathbf{0}$$

예시: 연어와 농어의 구별

예시: 연어와 농어의 구별

FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark line could serve as a decision boundary of our classifier. Overall classification error on the data shown is lower than if we use only one feature as in Fig. 1.3, but there will still be some errors. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

예시: 연어와 농어의 구별

Artificial Neuron

Mark I Perceptron

- Frank Rosenblatt
- 400 pixel image input
- Weights encoded in potentiometers
- Weight updated by electric motors

The New York Times

NEW NAVY DEVICE LEARNS BY DOING

July 8, 1958

"The Navy revealed the embryo of an electronic computer today that it expects <u>will be able to walk</u>, talk, see, write, reproduce itself and be conscious of its existence... Dr. Frank Rosenblatt, a research psychologist at the Cornell Aeronautical Laboratory, Buffalo, said Perceptrons might be fired to the planets as mechanical space explorers"

Artificial Neuron

• However, it cannot solve non-linearly-separable problems

MULTI-LAYER PERCEPTRON

Multi-layer Neural Network

- 1st Layer
 - $\mathbf{h}_1 = g(W_1\mathbf{x} + b_1)$
- 2^{nd} Layer • $h_2 = g(W_2h_1 + b_2)$

• Output layer

.

• $o = softmax(W_nh_{n-1} + b_n)$

Activation function $g(\cdot)$

- Sigmoid activation function
 - Squashes the neuron's pre-activation between 0 and 1
 - Always positive/Bounded/Strictly increasing

$$g(x) = \frac{1}{1 + \exp(-x)}$$

- Hyperbolic tangent ("tanh") activation function
 - Squashes the neuron's pre-activation between -1 and 1
 - Bounded/Strictly increasing

$$g(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}$$

Activation function $g(\cdot)$

- Rectified linear activation function (ReLU)
 - Bounded below by 0
 - Not upper bounded
 - Strictly increasing

 $g(a) = \operatorname{rectlin}(a) = \max(0, a)$

Soft-max activation function at the output

- For multi-class classification
 - We need multiple outputs (1 output per class)
- We use the softmax activation function at the output

$$O(\mathbf{a}) = \operatorname{softmax}(\mathbf{a}) = \begin{bmatrix} \frac{\exp(a_1)}{\sum_c \exp(a_c)} \\ \frac{\exp(a_2)}{\sum_c \exp(a_c)} \\ \vdots \\ \frac{\exp(a_c)}{\sum_c \exp(a_c)} \end{bmatrix}$$

- strictly positive
- sums to one

$$\stackrel{\text{alg}}{} \quad \forall]: (a, b, c) \rightarrow \left(\frac{e^a}{e^a + e^b + e^c}, \frac{e^b}{e^a + e^b + e^c}, \frac{e^c}{e^a + e^b + e^c} \right)$$

Example (character recognition example)

TRAINING OF MULTI-LAYER PERCEPTRON

Training: Loss function

Cross entropy (classification)

•
$$y, \hat{y} \in [0,1]^N$$
, $\sum_{i=1} y_i = 1$, $\sum_{i=1} \hat{y}_i = 1$

- $L = -\sum y_i \log \hat{y}_i$
- Square Euclidean distance (regression)

•
$$y, \hat{y} \in \Re^N$$

• $L = \frac{1}{2} \sum (y_i - \hat{y}_i)^2$

Cross Entropy (예시)

• Label:

- $[y_1 \ y_2 \ y_3] = [1,0,0]$: class 1
- $[y_1 \ y_2 \ y_3] = [0,1,0] : class 2$
- $[y_1 \ y_2 \ y_3] = [0,0,1]$: class 3

 $L = -\sum y_i \log \hat{y}_i$

• 예시

- Network output: $\hat{y} = [\hat{y}_1 \ \hat{y}_2 \ \hat{y}_3] = [0.3, 0.6, 0.1]$
 - Loss
 - If ground truth is class 1 (i.e., $y = [1,0,0]) \rightarrow -\log 0.3 = 1.204$
 - If ground truth is class 2 (i.e., $y = [0,1,0]) \rightarrow -\log 0.6 = 0.511$
 - If ground truth is class 3 (i.e., $y = [0,0,1]) \rightarrow -\log 0.1 = 2.303$
- Network output: $\hat{y} = [\hat{y}_1 \ \hat{y}_2 \ \hat{y}_3] = [0.01, 0.98, 0.01]$
 - Loss
 - If ground truth is class 1 (i.e., $y = [1,0,0]) \rightarrow -\log 0.01 = 4.605$
 - If ground truth is class 2 (i.e., $y = [0,1,0]) \rightarrow -\log 0.98 = 0.020$
 - If ground truth is class 3 (i.e., $y = [0,0,1]) \rightarrow -\log 0.01 = 4.605$

Forward/Backward propagation

• Chain rule

$$W^{new} = W^{old} - \eta \frac{dL}{dW}$$

Forward/Backward propagation

FEED-FORWARD NEURAL NETWORK (예시)

Forward propagation

Forward propagation matrix repr.

BACK-PROPAGATION ALGORITHM (예시)

Forward propagation (block-based representation)

Layer 1

Layer 2

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} + \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} \varphi(\alpha_1) \\ \varphi(\alpha_2) \\ \varphi(\alpha_3) \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} \varphi(\beta_1) \\ \varphi(\beta_2) \end{bmatrix}$$

Backward propagation; 2nd layer

Error propagation

$$\frac{\partial L}{\partial z_1} = -1 + r_1$$

$$\frac{\partial L}{\partial z_2} = r_2$$

Backward propagation; 2nd layer

• Error propagation ∂L ∂L

$$\frac{\partial L}{\partial \beta_1} = \varphi'(\beta_1) \frac{\partial L}{\partial z_1}$$

$$\frac{\partial L}{\partial \beta_2} = \varphi'(\beta_2) \frac{\partial L}{\partial z_2}$$

Backward propagation; 2nd layer

Error propagation

$$\begin{bmatrix} \frac{\partial L}{\partial y_1} \\ \frac{\partial L}{\partial y_2} \\ \frac{\partial L}{\partial y_3} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \\ u_{13} & u_{23} \end{bmatrix} \begin{bmatrix} \frac{\partial L}{\partial \beta_1} \\ \frac{\partial L}{\partial \beta_2} \end{bmatrix}$$

• Weight update

$$\begin{bmatrix} \frac{\partial L}{\partial u_{11}} & \frac{\partial L}{\partial u_{12}} & \frac{\partial L}{\partial u_{13}} \\ \frac{\partial L}{\partial u_{21}} & \frac{\partial L}{\partial u_{22}} & \frac{\partial L}{\partial u_{23}} \end{bmatrix} = \begin{bmatrix} \frac{\partial L}{\partial \beta_1} \\ \frac{\partial L}{\partial \beta_2} \end{bmatrix} \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial L}{\partial c_1} \\ \\ \frac{\partial L}{\partial c_2} \end{bmatrix} = \begin{bmatrix} \frac{\partial L}{\partial \beta_1} \\ \\ \frac{\partial L}{\partial \beta_2} \end{bmatrix}$$

Backward propagation; 1st layer

• Error propagation

$$\begin{bmatrix} \frac{\partial L}{\partial \alpha_1} \\ \frac{\partial L}{\partial \alpha_2} \\ \frac{\partial L}{\partial \alpha_3} \end{bmatrix} = \begin{bmatrix} \varphi'(\alpha_1) & 0 & 0 \\ 0 & \varphi'(\alpha_2) & 0 \\ 0 & 0 & \varphi'(\alpha_3) \end{bmatrix} \begin{bmatrix} \frac{\partial L}{\partial y_1} \\ \frac{\partial L}{\partial y_2} \\ \frac{\partial L}{\partial y_3} \end{bmatrix}$$

Backward propagation; 1st layer

TENSORFLOW 실습

TENSORFLOW INTRODUCTION

What is TensorFlow?

- TensorFlow is a deep learning library open-sourced by Google.
- TensorFlow provides primitives for defining functions on tensors and automatically computing their derivatives.
- Tensor is a multidimensional array of numbers

Design Choice

- Network structures
 - The mathematical relationship between inputs and outputs
- Loss function
- Optimization
 - Optimization methods
 - Hyper-parameters (Batch size, Learning rate, ...)

Classification vs Regression

The variable we are trying to predict is **DISCRETE**

The variable we are trying to predict is **CONTINUOUS**
MNIST dataset (classification example)

- handwritten digits
- a training set of 60,000 examples
- 28x28 images

CLASSIFIER	PREPROCESSING	TEST ERROR RATE (%)	eference		
,	Linear Classifiers	L			
linear classifier (1-layer NN)	none	12.0	LeCun et al. 1998		
linear classifier (1-layer NN)	deskewing	8.4	LeCun et al. 1998		
pairwise linear classifier	deskewing	7.6	LeCun et al. 1998		
	Non-Linear Classifiers				
40 PCA + quadratic classifier	none	3.3	<u>LeCun et al. 1998</u>		
1000 RBF + linear classifier	none	3.6	<u>LeCun et al. 1998</u>		
	SVMs				
SVM, Gaussian Kernel	none	1.4			
SVM deg 4 polynomial	deskewing	1.1	LeCun et al. 1998		
Reduced Set SVM deg 5 polynomial	deskewing	1.0	LeCun et al. 1998		
Virtual SVM deg-9 poly [distortions]	none	0.8	LeCun et al. 1998		
Virtual SVM, deg-9 poly, 1-pixel jittered	none	0.68	DeCoste and Scholkopf, MLJ 2002		
Virtual SVM, deg-9 poly, 1-pixel jittered	deskewing	0.68	DeCoste and Scholkopf, MLJ 2002		
Virtual SVM, deg-9 poly, 2-pixel jittered	deskewing	0.56	DeCoste and Scholkopf, MLJ 2002		
	Neural Nets				
2-layer NN, 300 hidden units, mean square error	none	4.7	LeCun et al. 1998		
2-layer NN, 300 HU, MSE, [distortions]	none	3.6	LeCun et al. 1998		
2-layer NN, 300 HU	deskewing	1.6	LeCun et al. 1998		
2-layer NN, 1000 hidden units	none	4.5	LeCun et al. 1998		
2-layer NN, 1000 HU, [distortions]	none	3.8	LeCun et al. 1998		
3-layer NN, 300+100 hidden units	none	3.05	LeCun et al. 1998		
3-layer NN, 300+100 HU [distortions]	none	2.5	LeCun et al. 1998		
3-layer NN, 500+150 hidden units	none	2.95	LeCun et al. 1998		
3-layer NN, 500+150 HU [distortions]	none	2.45	LeCun et al. 1998		
3-layer NN, 500+300 HU, softmax, cross entropy, weight decay	none	1.53	Hinton, unpublished, 2005		
2-layer NN, 800 HU, Cross-Entropy Loss	none	1.6	Simard et al., ICDAR 2003		
2-layer NN, 800 HU, cross-entropy [affine distortions]	none	1.1	Simard et al., ICDAR 2003		
2-layer NN, 800 HU, MSE [elastic distortions]	none	0.9	Simard et al., ICDAR 2003		

Convolutional nets								
Convolutional net LeNet-1	subsampling to 16x16 pixels	1.7	LeCun et al. 1998					
Convolutional net LeNet-4	none	1.1	LeCun et al. 1998					
Convolutional net LeNet-4 with K-NN instead of last layer	none	1.1	LeCun et al. 1998					
Convolutional net LeNet-4 with local learning instead of last layer	none	1.1	LeCun et al. 1998					
Convolutional net LeNet-5, [no distortions]	none	0.95	LeCun et al. 1998					
Convolutional net LeNet-5, [huge distortions]	none	0.85	<u>LeCun et al. 1998</u>					
Convolutional net LeNet-5, [distortions]	none	0.8	<u>LeCun et al. 1998</u>					
Convolutional net Boosted LeNet-4, [distortions]	none	0.7	<u>LeCun et al. 1998</u>					
Trainable feature extractor + SVMs [no distortions]	none	0.83	Lauer et al., Pattern Recognition 40-6, 2007					
Trainable feature extractor + SVMs [elastic distortions]	none	0.56	Lauer et al., Pattern Recognition 40-6, 2007					
Trainable feature extractor + SVMs [affine distortions]	none	0.54	Lauer et al., Pattern Recognition 40-6, 2007					
unsupervised sparse features + SVM, [no distortions]	none	0.59	Labusch et al., IEEE TNN 2008					
Convolutional net, cross-entropy [affine distortions]	none	0.6	<u>Simard et al., ICDAR 2003</u>					
Convolutional net, cross-entropy [elastic distortions]	none	0.4	<u>Simard et al., ICDAR 2003</u>					
large conv. net, random features [no distortions]	none	0.89	<u>Ranzato et al., CVPR 2007</u>					
large conv. net, unsup features [no distortions]	none	0.62	<u>Ranzato et al., CVPR 2007</u>					
large conv. net, unsup pretraining [no distortions]	none	0.60	<u>Ranzato et al., NIPS 2006</u>					
large conv. net, unsup pretraining [elastic distortions]	none	0.39	<u>Ranzato et al., NIPS 2006</u>					
large conv. net, unsup pretraining [no distortions]	none	0.53	Jarrett et al., ICCV 2009					
large/deep conv. net, 1-20-40-60-80-100-120-120-10 [elastic distortions]	none	0.35	<u>Ciresan et al. IJCAI 2011</u>					
committee of 7 conv. net, 1-20-P-40-P-150-10 [elastic distortions]	width normalization	0.27 +-0.02	<u>Ciresan et al. ICDAR 2011</u>					
committee of 35 conv. net, 1-20-P-40-P-150-10 [elastic distortions]	width normalization	0.23	<u>Ciresan et al. CVPR 2012</u>					

Classification Example Code

<u>Classification Example</u>

Classification Example Code

$784 = 28^2$
0
1
2
3
4
5
6
7
8
9

Regression Example Code

<u>Regression Example</u>

VALIDATION

						Self Driving													
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory									
Methods	Traditional	Non-machine Learning			GPS, SLAM		Optimal control												
		Machine-Learning based		MLP		Pedestrian detection (HOG+SVM)													
	Dee		Supervi	CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning												
	p-Learning		ming based	ming based	ming based	ming based	ming based	ised	ised	ised	ised	ised	sed	RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning		
	base	meth	meth	DNN															
	Ď	lod	Re	einforcement															
			U	nsupervised															

Validation set approach

- Divide the data in three parts:
 - training, validation (development), and test. We use the train and validation data to select the best model and the test data to assess the chosen model.

Validation set approach

- Training set
 - To fit the models
- Validation set
 - To estimate prediction error for model selection
- Test set
 - To assess of the generalization error of the final chose model

k-fold cross validation

• We partition the data into *K* parts. For the k —th part, we fit the model to the other K - 1 parts of the data, and calculate the prediction error of the fitted model when predicting the *k*th part of the data. We do this for $k = 1, 2, \dots, K$ and combine the *K* estimates

k-Fold cross validation

Leave-one-out cross validation

전통적인 접근법

					Tasks							
						Self Driving						
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory		
Methods	Traditional	Non-machine Learning			GPS, SLAM		Optimal control					
		Machine-Lea		MLP		Pedestrian detection (HOG+SVM)						
	Deep-Learning		Supervised	Supervised	Supervised	CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning			
		ming based				ised	RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning		
	base	meth		DNN								
	þ	nod	Re	einforcement								
			U	nsupervised								

Conventional approach

Image classification

"Motocycle"

Slides from "Andrew Ng"

Why is this hard?

5		N. M. W.	D								
Bu	t the	car	nera	see	es th	nis:					
194	210	201	212	199	213	215	195	178	158	182	209
180	189	190	221	209	205	191	167	147	115	129	163
114	126	140	188	176	165	152	140	170	106	-78	88
87	103	115	154	143	142	149	153	173	101	57	57
102	112	106	131	122	138	152	147	128	84	58	66
94	95	79	104	105	124	129	113	107	87	69	67
68	71	69	98	89	92	98	95	89	88	76	67
41	56	68	99	63	45	60	82	58	76	75	65
20	43	69	75	56	41	51	73	55	70	63	44
50	50	57	69	75	75	73	74	53	68	59	37
172	59	53	66	84	92	84	74	57	72	63	42
67	61	58	65	75	78	76	73	59	75	69	50

Feature representation

Slides from "Andrew Ng"

Feature representation

Example of Feature Representation

• But, ... we don't have a handlebars detector. So, researchers try to handdesign features to capture various statistical properties of the image

Feature representation

Computer vision features

Slides from "Andrew Ng"

Audio features

Traditional pattern recognition

• Fixed/engineered feature + trainable classifier

CASE STUDY: PEDESTRIAN DETECTOR

					Tasks													
						Self Driving												
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory								
Methods	Traditional	Non-machine Learning			GPS, SLAM		Optimal control											
		Machine-Lea	Supervised	MLP		Pedestrian detection (HOG+SVM)												
	Dee			Supervised	Supervised	Supervised	Supervised	Supervised	Supervi	Supervi	Supervi	Supervi	CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning		
	p-Learning	ming based							RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning						
	base	meth		DNN														
	þ	lod	Re	einforcement														
			U	nsupervised														

Detection problem \rightarrow (binary) classification problem

Sliding window scheme

Each window is separately classified

Training data

- 64x128 images of humans cropped from a varied set of personal photos
 - Positive data 1239 positive window examples (reflections->2478)

• Negative data – 1218 person-free training photos (12180 patches)

Training

- A preliminary detector
 - Trained with (2478) vs (12180) samples
- Retraining
 - With augmented data set
 - initial 12180 + hard examples
 - Hard examples
 - 1218 negative training photos are searched exhaustively for false positive

Feature: histogram of oriented gradients (HOG)

image

Feature vector dimension = 16×8 (for tiling) x 8 (orientations) = 1024

Averaged examples

Algorithm

Training (Learning)

• Represent each example window by a HOG feature vector

• Train a SVM classifier

Testing (Detection)

Sliding window classifier

$$f(x) = \mathbf{w}^\top \mathbf{x} + b$$

Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Vol. 1. IEEE, 2005.

Learned model

 $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$

Slide from Deva Ramanan

Why are Deep Architectures hard to train?

- Vanishing gradient problem in backpropagation.
- Local Optimum (saddle points?) Issue in Neural Nets
 - For Deep Architectures, back-propagation is apparently getting a local optimum (saddle points?) that does not generalize well

Empirical Results: Poor performance of Backpropagation on Deep Neural Nets [Erhan et al., 2009]

- MNIST digit classification task; 400 trials (random seed)
- Each layer: initialize weights with random numbers
- Although L + 1 layers is more expressive, worse error than L layers.

Al Winters

Two major episodes:

- 1974-80 ٠
- 1987-93 ٠

Smaller episodes:

- 1966: the failure of machine translation
- 1970: the abandonment of connectionism ٠
- 1971-75: DARPA's frustration with the Speech Understanding Research program
- 1973: the large decrease in AI research in the UK in response to the Lighthill report.
- 1973–74: DARPA's cutbacks to academic AI. research in general
- 1987: the collapse of the Lisp machine market
- 1988: the cancellation of new spending on AI by the Strategic Computing Initiative
- 1993: expert systems slowly reaching the bottom
- 1990s: the quiet disappearance of the fifth-٠ generation computer project's original goals.

"In no part of the field have discoveries made so far produced the major impact that was then promised."

References: [18]

nstitute of

Website:

An example

Feature extraction

Width feature

FIGURE 1.2. Histograms for the length feature for the two categories. No single threshold value of the length will serve to unambiguously discriminate between the two categories; using length alone, we will have some errors. The value marked *I** will lead to the smallest number of errors, on average. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Lightness feature

FIGURE 1.3. Histograms for the lightness feature for the two categories. No single threshold value x^* (decision boundary) will serve to unambiguously discriminate between the two categories; using lightness alone, we will have some errors. The value x^* marked will lead to the smallest number of errors, on average. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Classification

Simple model

Complex model

