SELF-DRIVING CARS AND DEEP LEARNING

아주대학교 구형일

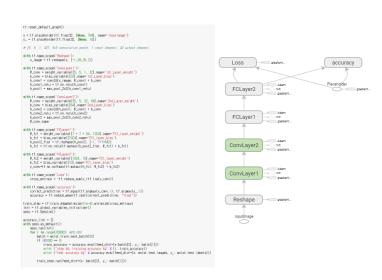
Course overview

- Introduction
 - Self Driving Cars/Machine Learning/Deep Learning
- Machine Learning
 - Artificial Neural Network (ANN,MLP)
 - Convolution Neural Network (CNN)
 - Recurrent Neural Network (RNN)
 - (Deep) Reinforcement Learning

Andrew Ng's laptop explains Deep Learning. Photo: Ariel Zambelich/Wired

Course overview

with applications



with (some) codes

INTRODUCTION

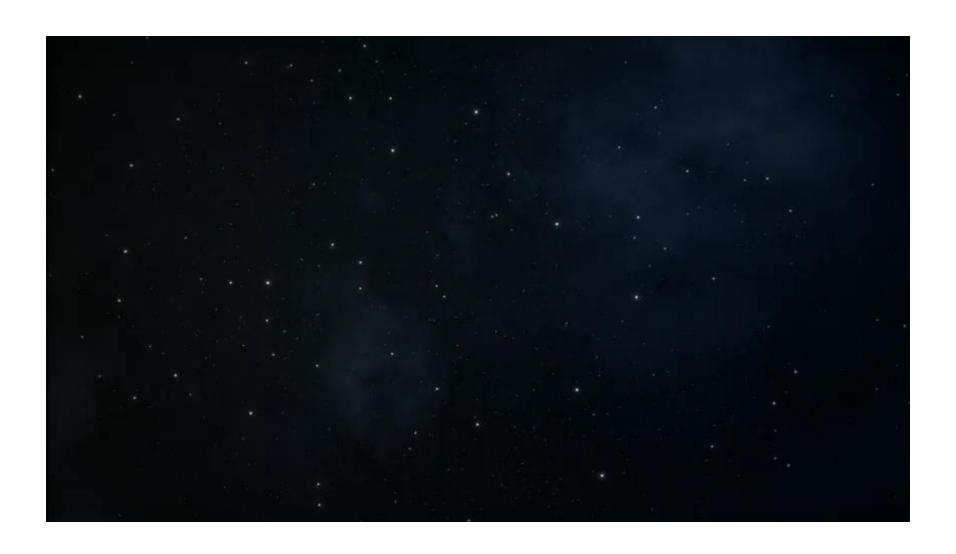
교통사고원인

1. Driver distraction

- 2. Speeding
- 3. Drunk driving
- 4. Reckless driving
- 5. Rain
- 6. Running red lights
- 7. Running stop signs
- 8. Teenage drivers
- 9. Night driving
- 10. Design defects
- 11. Unsafe lane changes
- 12. Wrong-way driving
- 13. Improper turns
- 14. Tailgating

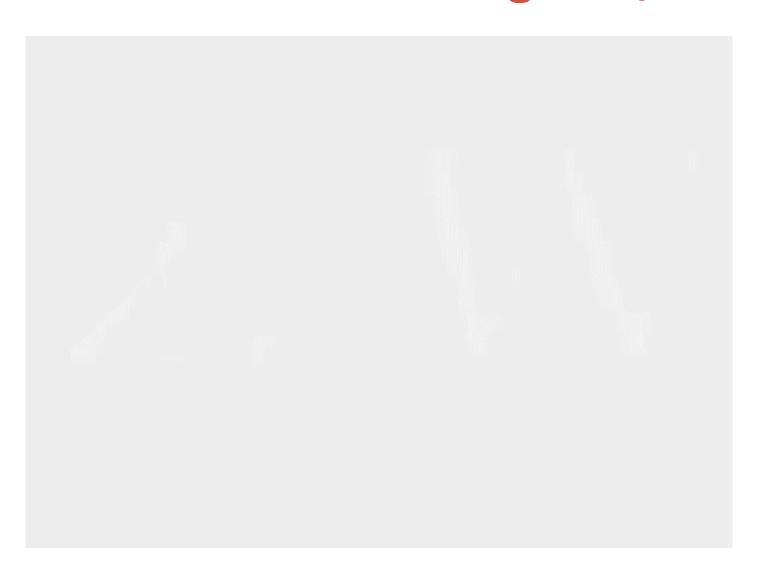
- 15. Driving under the influence of drugs
- 16. Ice
- 17. Snow
- 18. Road rage
- 19. Potholes
- 20. Drowsy driving
- 21. Tire blowouts
- 22. Fog
- 23. Deadly curves
- 24. Animal crossings
- 25. Street racing
- 26. Others

TED: Sebastian Thrun



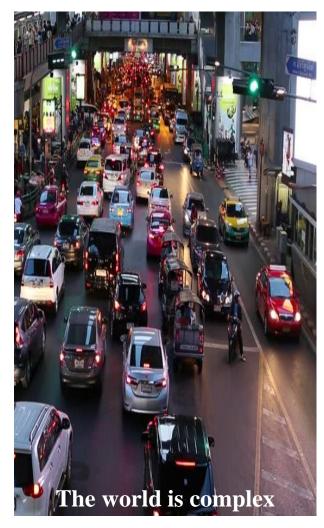
SELF-DRIVING CARS

DARPA Grand Challenge II (2006)

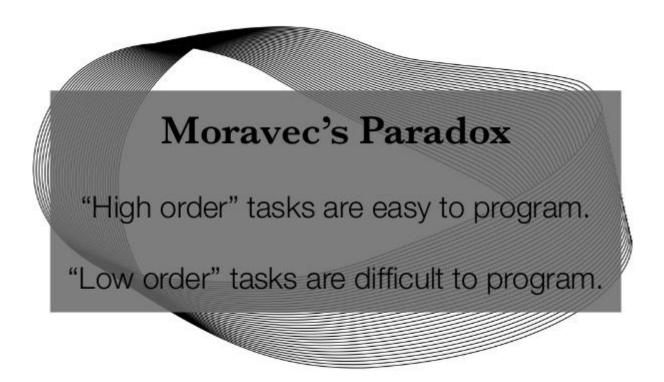


DARPA Urban Challenge (2007)

Autonomous-driving is hard



- The main lesson of 35 years of AI research is that the hard problems are easy and the easy problems are hard. The mental abilities of a four-year-old that we take for granted – recognizing a face, lifting a pencil, walking across a room, answering a question – in fact solve some of the hardest engineering problems ever conceived... As the new generation of intelligent devices appears, it will be the stock analysts and petrochemical engineers and parole board members who are in danger of being replaced by machines. The gardeners, receptionists, and cooks are secure in their jobs for decades to come.
 - Pinker, Steven (September 4, 2007) [1994], The Language Instinct, Perennial Modern Classics, Harper, ISBN 0-06-133646-7



• RoboCup 2016: NimbRo vs AUTMan

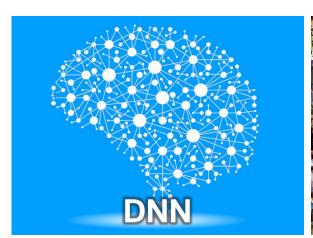
 A Compilation of Robots Falling Down at the DARPA Robotics Challenge

Why?

- "Encoded in the large, highly evolved sensory and motor portions of the human brain is a billion years of experience about the nature of the world and how to survive in it.
- We are all prodigious Olympians in perceptual and motor areas, so good that we make the difficult look easy. Abstract thought, though, is a new trick, perhaps less than 100 thousand years old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it"
 - Moravec, Hans (1988), Mind Children, Harvard University Press

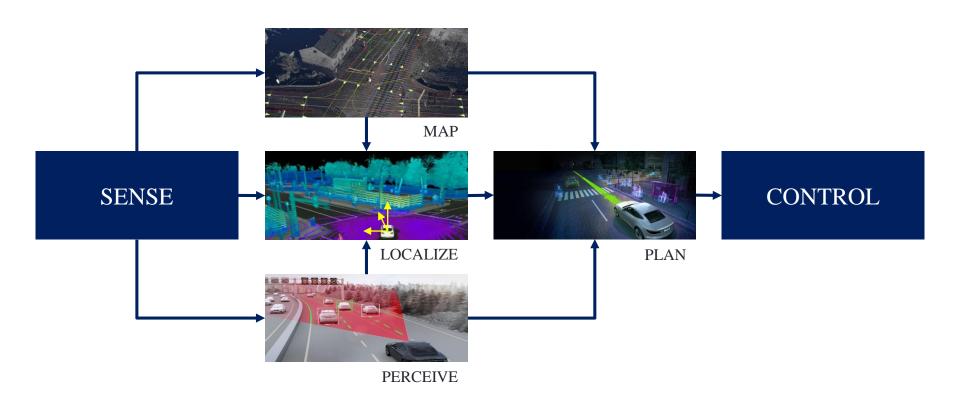
How hard is driving?

Deep learning to the rescue

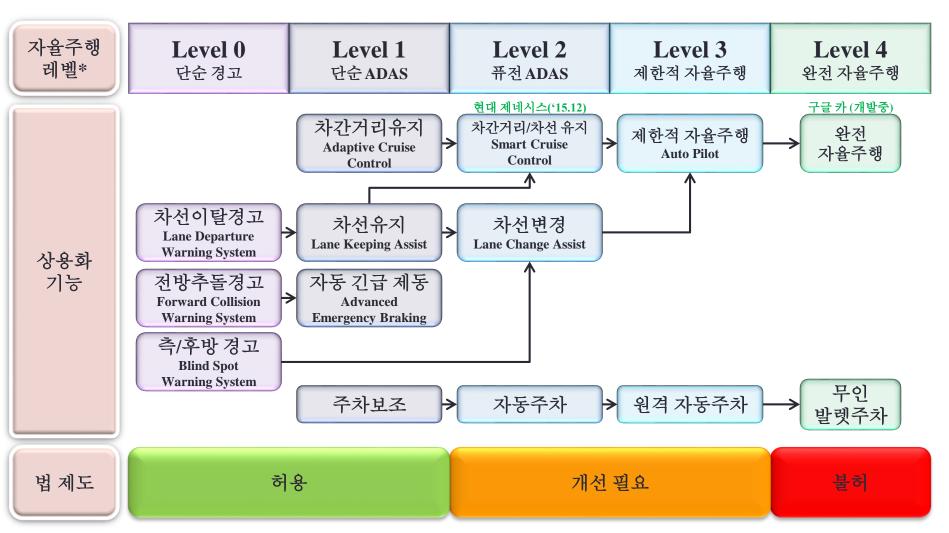


SELF DRIVING CARS

The basic self-driving loop

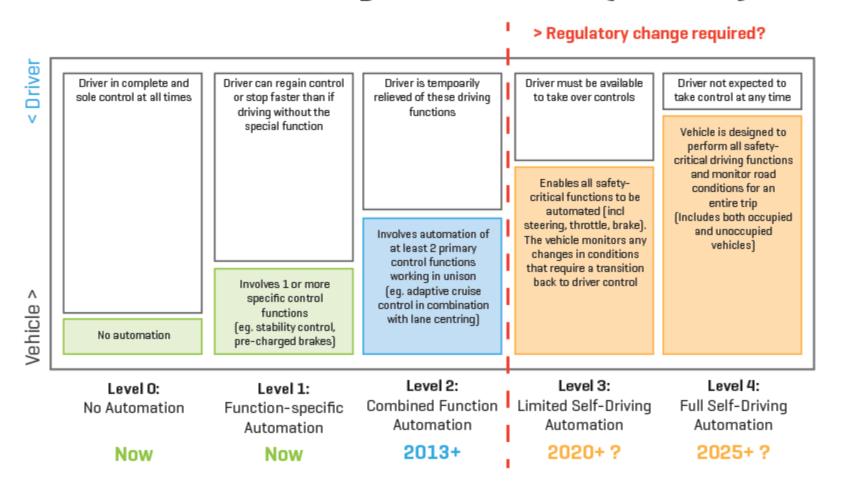


Autonomous Driving



^{*}National Highway Traffic Safety Administration (NHTSA-미국고속도로교통안전청) 기준

Levels of driving automation (NHTSA)

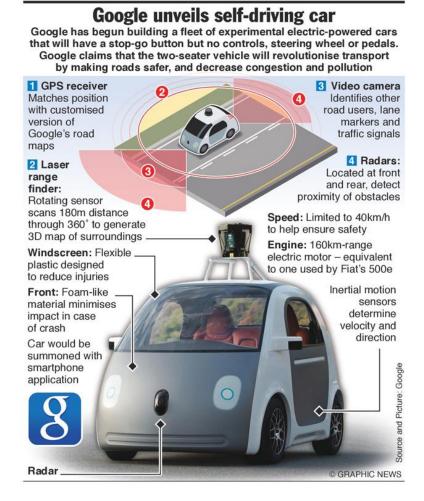


Source: NHTSA (Modified)

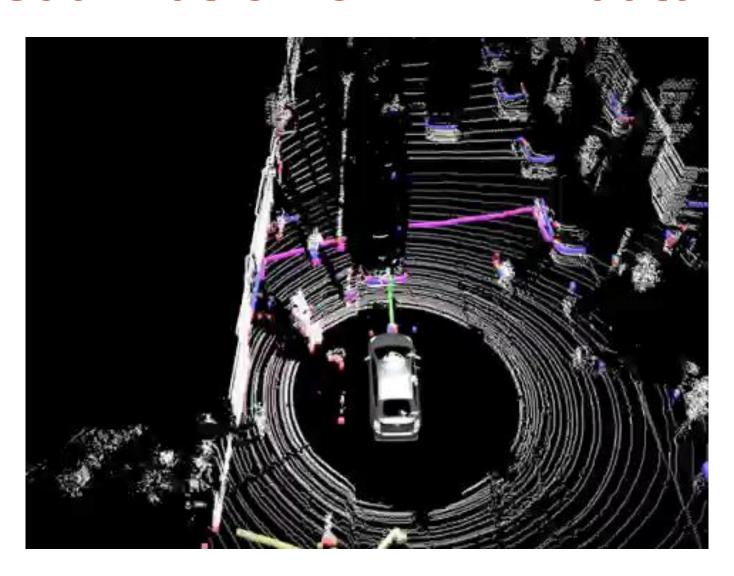
GOOGLE'S SELF DRIVING CAR

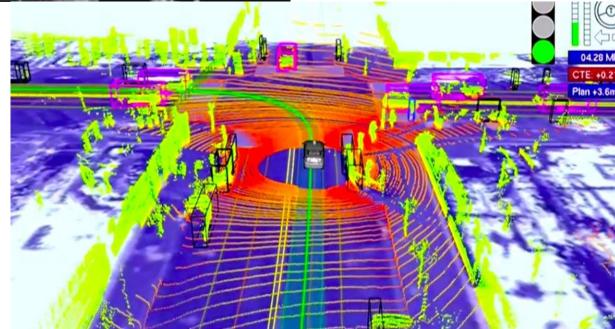
Google self-driving car

- GPS
- LiDAR
- Camera
- Radar



Visualization of LIDAR data





Disengagements Reports

- Disengagements: deactivations of the autonomous mode
 - when a failure of the autonomous technology is detected (272 cases)
 - when the safe operation of the vehicle requires that the autonomous vehicle test driver disengage the autonomous mode and take immediate manual control of the vehicle. (13+56 cases)

Disengagements related to detection of a failure of the autonomous technology

Month	Number Disengages	Autonomous miles on public roads	
2014/09	0	4207.2	
2014/10	14	23971.1	
2014/11	14	15836.6	
2014/12	40	9413.1	
2015/01	48	18192.1	
2015/02	12	18745.1	
2015/03	26	22204.2	
2015/04	47	31927.3	
2015/05	9	38016.8	
2015/06	7	42046.6	
2015/07	19	34805.1	
2015/08	4	38219.8	
2015/09	15	36326.6	
2015/10	11	47143.5	
2015/11	6	43275.9	
Total	272	424331	

Driver-initiated disengagements related to safe operation of the vehicle

Autonomous miles on public roads	Number Disengages	Month	
4207.2	2	2014/09	
23971.1	5	2014/10	
15836.6	7	2014/11	
9413.1	3	2014/12	
18192.1	5	2015/01	
18745.1	2	2015/02	
22204.2	4	2015/03	
31927.3	4	2015/04	
38016.8	4	2015/05	
42046.6	4	2015/06	
34805.1	10	2015/07	
38219.8	3	2015/08	
36326.6	1	2015/09	
47143.5	5	2015/10	
43275.9	10	2015/11	
424331	69	Total	

California Autonomous Testing Disengagements (2015)

Company	Miles Driven	DE*	Miles per DE	Miles per DE in 2015	Common Causes
Waymo (aka Google)	635868	124	5128	1244.4	Software discrepancy; unwanted vehicle manuver
VW/Audi	N/A	N/A	N/A	74.8	N/A
Mercedes-Benz	673.4	336	2	1.8	Driver discomfort; technology evaluation management
Delphi	3125.3	178	17.6	41.9	Completing lane change in heavy traffic; traffic light detection
Tesla Motors	550	182	3	N/A	Planner output invalid; follower output invalid
Bosch	983	1442	0.7	1.5	Planned test of technology
Nissan	4099	28	246.7	14	AV system failure; AV is about to collide with vehicle or obstacle
Cruise (GM)	9846.5	414	9.3	N/A	To avoid unexpected behavior
BMW	638	1	638	N/A	Lane marking unclear
Honda	N/A	N/A	N/A	N/A	N/A
Ford	590	3	196.7	N/A	Aborted lane change due to vehicle overtaking at high speed
*DE = Disengagements					

TESLA'S AUTOPILOT

Autopilot

Autopilot combines a forward looking camera, radar, and 360 degree sonar sensors with real time traffic updates to automatically drive Model S on the open road and in dense stop and go traffic. Changing lanes becomes as simple as a tap of the turn signal. When you arrive at your destination, Model S will both detect a parking spot and automatically park itself. Standard equipment safety features are constantly monitoring stop signs, traffic signals and pedestrians, as well as for unintentional lane changes.

Tesla vs Google

How Tesla's Technology Works

The Tesla uses a computer vision-based vehicle detection

system, but according to the company, it is not intended to be used hands-free and parts of the system are unfinished.

The accident may have happened in part because the crash-avoidance system is designed to engage only when radar and computer vision systems agree that there is an obstacle, according to an industry executive with direct knowledge of the system.

Tesla Model S Michael Nagle for The New York Times

Forward-facing camera

Image-processing software can detect lane stripes, signs, stoplights, road signs and other objects.

Forward radar

Reflected microwaves can identify location and speed — but not always type — of nearby vehicles.

GPS

Utrasonic

sensors

Reflected

detect

sound waves

distance to nearby objects. Combined with highprecision mapping, GPS determines the car's position on the road.

How It Compares

Google does not intend to make its own cars but to partner with carmakers, and recently announced plans to adapt 100 Chrysler minivans for autonomous driving. Google's cars primarily use a laser system known as Lidar (light detection and ranging), a spinning range-finding unit on top of the car that creates a detailed map of the car's surroundings as it moves.

Lidar is also used on many of the experimental autonomous vehicles being developed by Nissan, BMW, Apple and others, but not by Tesla. Some experts speculate that a Lidar-driven car might have avoided this fatal crash.

Google's self-driving car on its test track. Gordon De Los Santos/Google

Google과 Tesla의 자율주행 자동차 기술 차이

Computer Vision

LIDAR 사용 (높은 위치 인식 능력) Camera 사용 테슬라의 CEO 앨런 머스크는 구글의 LIDAR 센서 에 관해 "그렇게 비싼 센서를 사용한 자율주행 자동

『관해 "그렇게 비싼 센서들 사용한 사율수행 사원 - 차를 개발하는 것은 과하다(overkill)"라고 비판

Car Control 완전 자율 주행 기술 목표 2013년 구글은 일부 직원의 출퇴근에 자율주 행차를 타도록 했는데 차 안 비디오카메라를 모니터링한 결과 운전자가 잠이 드는 등 운전 에 집중하지 않음. 이후 완전 자율 주행 기술을 목표로 개발 Autopilot 기능 제공

자동차의 비행기화 '비행기에서 돌발 상황에만 파일럿이 개입하듯 돌발 상황에서 운전자의 조작이 필요'

테슬라 자율주행 모드 첫 사망사고 발생...美당국 조사 착수

자동주행 모드로 운행 중이던 테슬라 모델 S 전기자동차의 운전자가 충돌사고로 사망했다고 테슬라가 30일(현지시간) 밝혔다.

테슬라는 미국 고속도로교통안전청(NHTSA)에 사고 내용을 통보했으며 NHTSA가이에 대한 예비조사를 개시했다며 이렇게 밝혔다.

이 사고는 플로리다주 윌리스턴에서 올해 5월 7일 발생했다.

예비조사 보고서에 따르면 충돌사고가 발생한 시점은 옆면이 하얀색으로 칠해진 대형 트레일러트럭이 테슬라 앞에서 좌회전할 때였다. 사고 지점은 양방향이 중앙 분리대로 분리된 고속도로의 교차로였으며, 신호등은 없었다.

충돌 당시 모델 S의 앞쪽 창문이 트레일러의 바닥 부분과 부딪혔으며 이때 당한 부 상으로 모델 S 운전자가 사망했다.

테슬라에 따르면 운전자와 자동주행 센서 양쪽 모두 트레일러의 하얀색 면을 인식 하지 못했고 브레이크를 걸지 않았다.

이 회사는 사고 당시 '밝게 빛나고 있던 하늘'이 배경에 깔려 있어 운전자나 자동주행 센서가 트레일러의 하얀색 면을 인식하지 못했던 것으로 보인다고 설명했다.

이 회사는 이번 사고가 '비극적 손실'이었으며 자동주행 모드가 작동되고 있는 상태에서 발생한 첫 사망사고라고 설명했다.

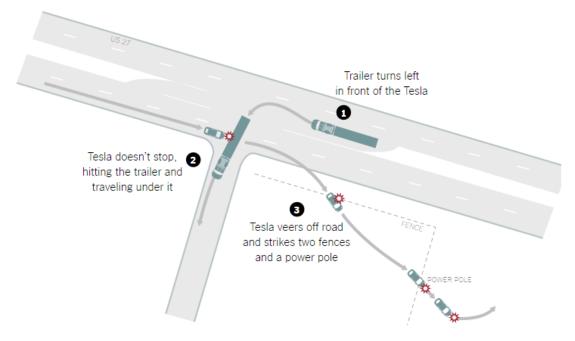
테슬라는 자사 자동차들이 자동주행 모드로 운행한 누적 거리는 2억900만 km에 이른다며, 미국과 세계의 모든 자동차를 놓고 따지면 사망사고가 각각 주행거리 1억5천 km, 9천700만 km에 한 차례 꼴로 일어난다고 말했다.

테슬라는 NHTSA의 예비조사가 지금 단계에서는 시스템이 기대대로 작동했는지 판별하기 위한 예비조사에 불과하다고 강조했다.

한경닷컴 뉴스룸 open@hankyung.com

How the Accident happened

The Tesla Model S crashed in northern Florida into a truck that was turning left in front of it. The Tesla then ran off the road, hitting a fence and a power pole before coming to a stop.



Traffic Fatalities

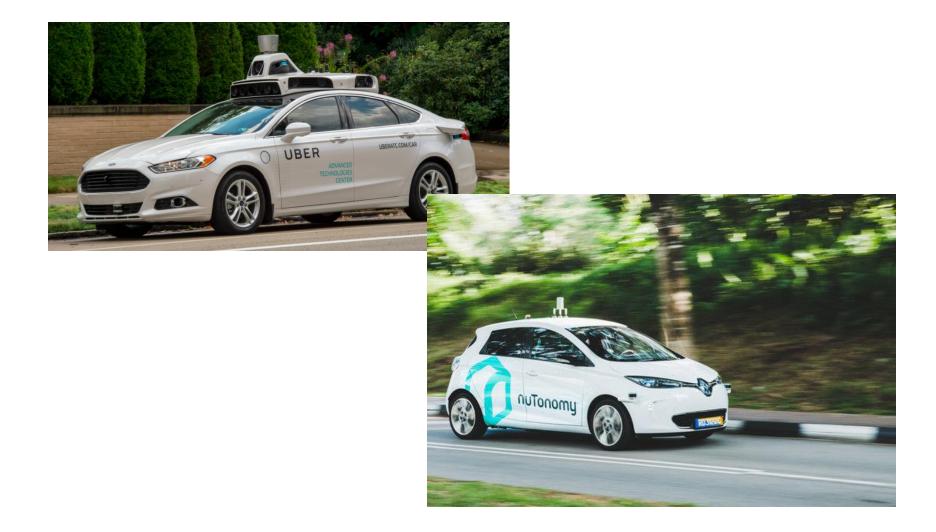
- Total miles driven in U.S. in 2014:
 - 3,000,000,000,000 (3 million million)
 - Fatalities: 32,675 (1 in 90 million)

- Tesla Autopilot mile driven since October 2015:
 - 300,000,000 (300 million)
 - Fatalities: 1

UBER...

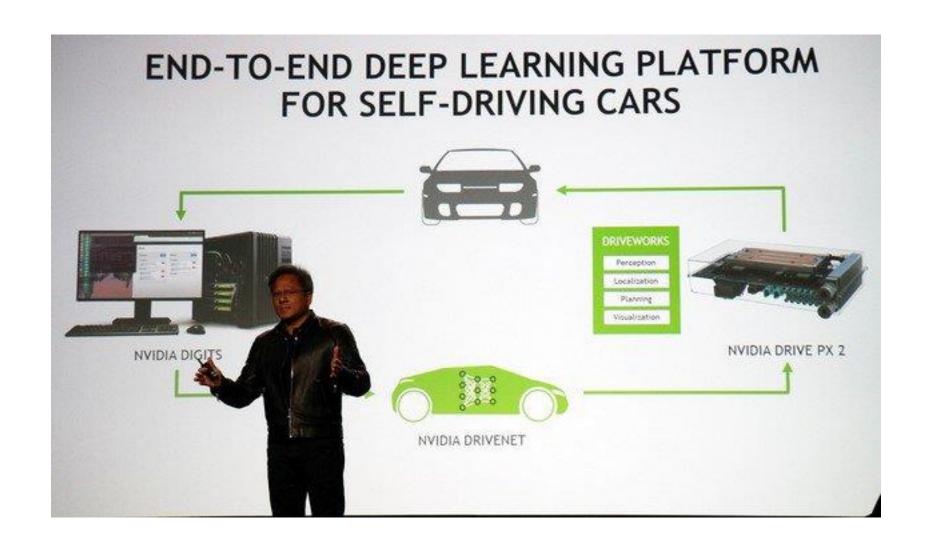
Pittsburgh, your self-driving Uber is arriving now

UBER/nuTonomy



NVIDIA'S DRIVERWORKS

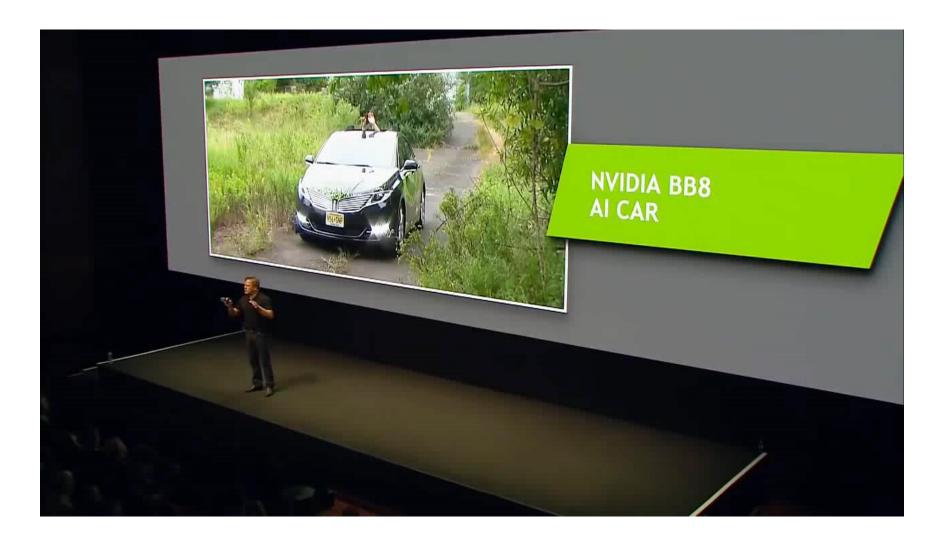
NVIDIA



Perception

Visualization

Planning



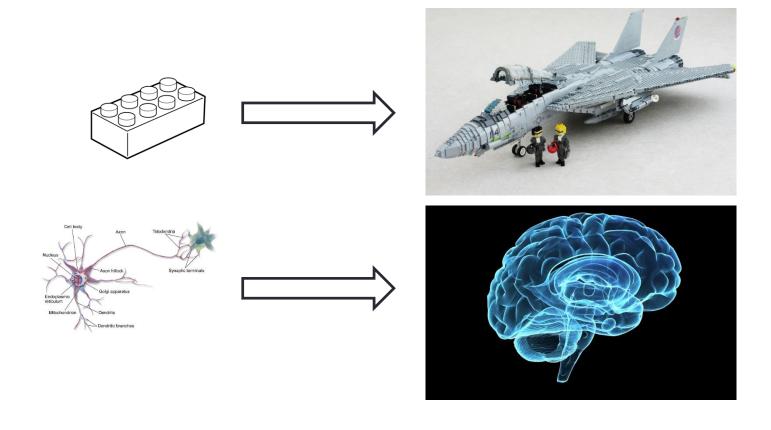
COURSE OVERVIEW

					Tasks							
						Self Driving						
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory		
	Traditional	Non-machine Learning		GPS, SLAM		Optimal control						
		Þ	Supervised	SVM MLP		Pedestrian detection (HOG+SVM)						
Methods	Deep-Learning based	1achine-Le		CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning					
		Machine-Learning based method	vised	RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning	Behavior Prediction/ Driver identificati on		*		
		netho		DNN					*	*		
		d	Re	einforcement			*					
			U	nsupervised						*		

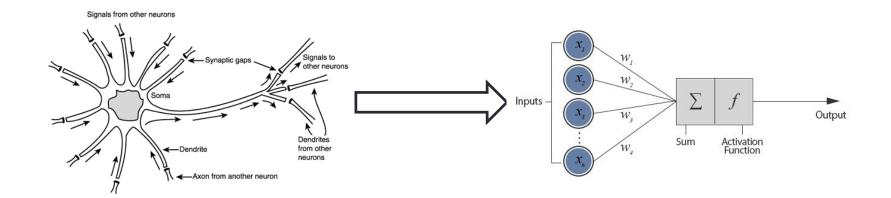
ARTIFICIAL NEURON

					Tasks							
						Self Driving						
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory		
	Traditional	Non-	Non-machine Learning				Optimal control					
		X	Supervised	SVM MLP		Pedestrian detection (HOG+SVM)						
Methods	Dec	achine-Lear		CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning					
iods	Deep-Learning	Machine-Learning based method		RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning					
	based	met		DNN								
	ed	por	Reinforcement									
			U	nsupervised								

뉴런: 신경망의 기본 단위



인공 뉴런(Artificial Neuron)



실제 뉴런

뉴런의 수학적 모델

예시: 연어와 농어의 구별

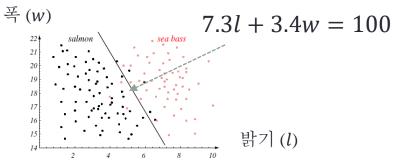
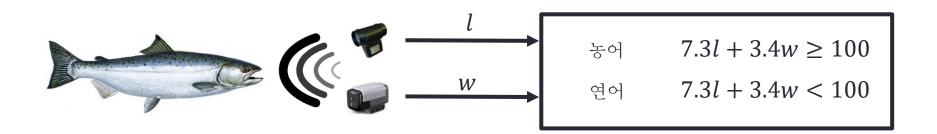
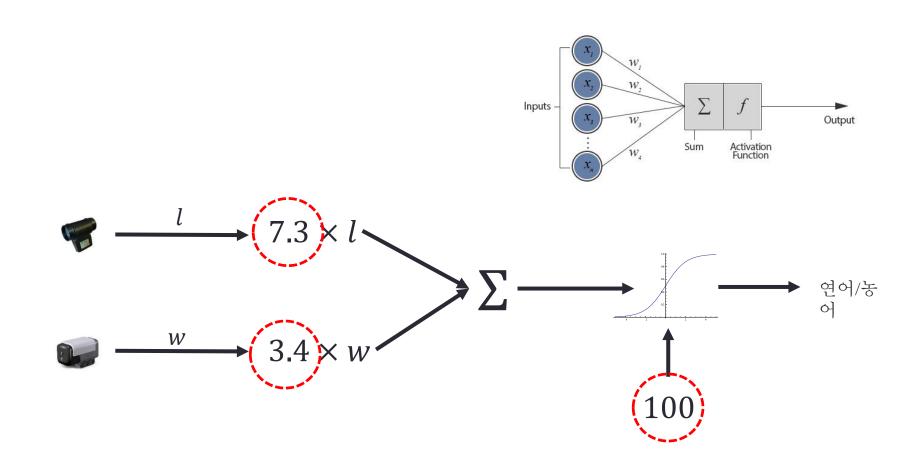


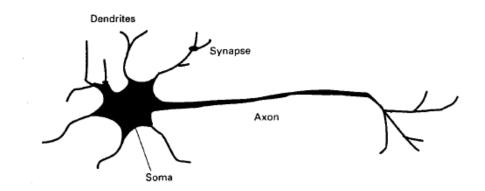
FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark line could serve as a decision boundary of our classifier. Overall classification error on the data shown is lower than if we use only one feature as in Fig. 1.3, but there will still be some errors. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

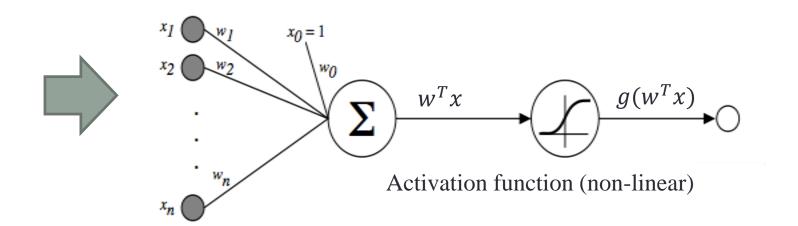


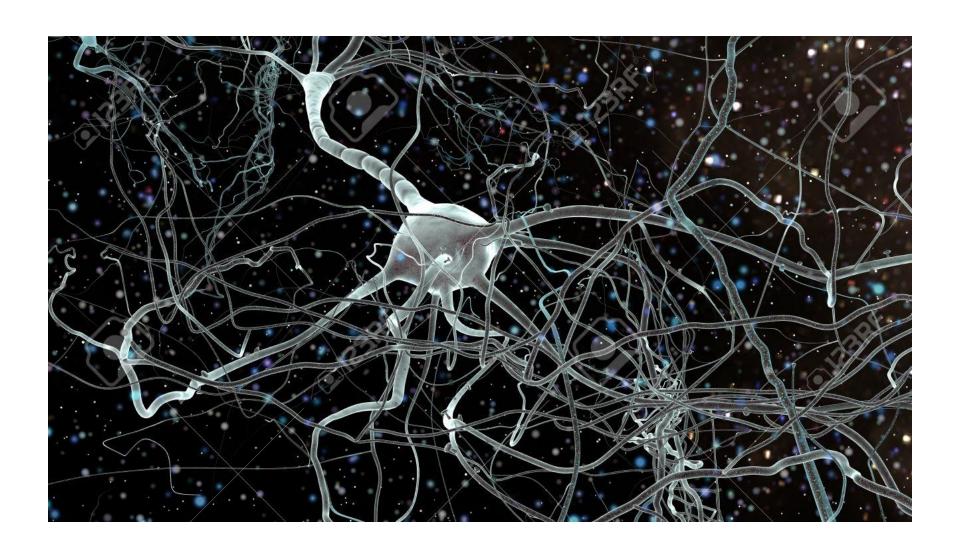
예시: 연어와 농어의 구별



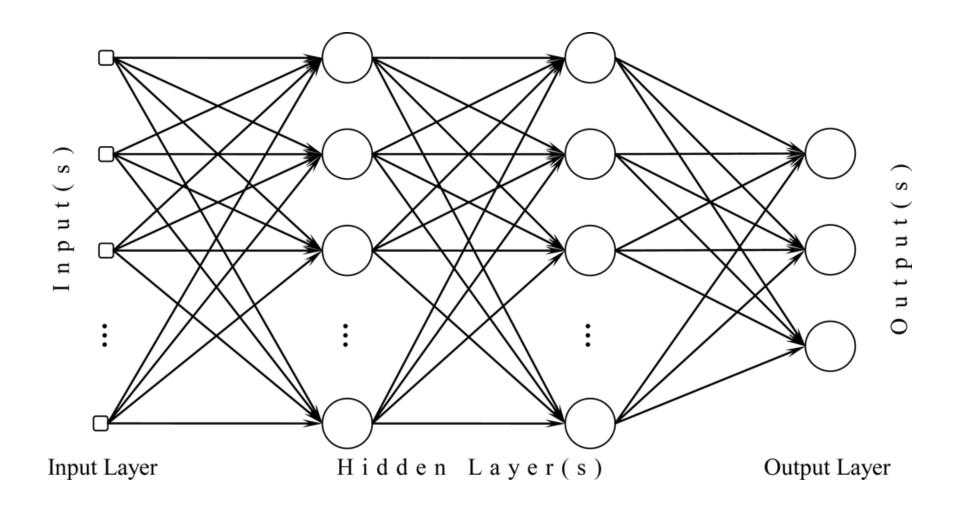
Artificial Neuron







Multi-layer Perceptron



TYPES OF MACHINE LEARNING

Neural Network 기반 방법을 중심으로

					Tasks						
						ADAS					
						Self Driving					
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory	
	Traditional	Non-machine Learning		GPS, SLAM		Optimal control					
		P	Supervised Machine-Learning based method	SVM MLP		Pedestrian detection (HOG+SVM)					
Me	De	1achine-Lea		CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning				
Methods	Deep-Learning based	arning based m		RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning	Behavior Prediction/ Driver identificati on		*	
		nethc		DNN					*	*	
		bc	Reinforcement				*				
			U	Insupervised						*	

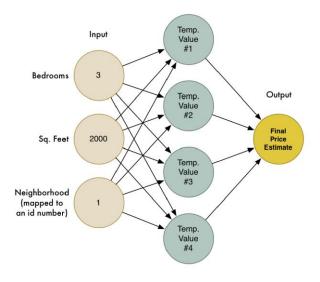
Why neural networks?

Universal function approximator

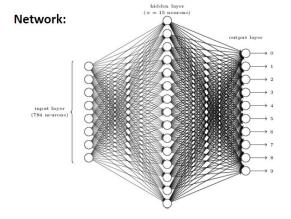
Universal approximation theorem

From Wikipedia, the free encyclopedia

In the mathematical theory of artificial neural networks, the **universal approximation theorem** states^[1] that a <u>feed-forward network with a single</u> <u>hidden layer</u> containing a finite number of neurons (i.e., a multilayer perceptron), <u>can approximate continuous functions on compact subsets of Rⁿ</u>, under mild assumptions on the activation function. The theorem thus states that simple neural networks can *represent* a wide variety of interesting functions when given appropriate parameters; however, <u>it does not touch upon the algorithmic learnability of those parameters.</u>



Input:



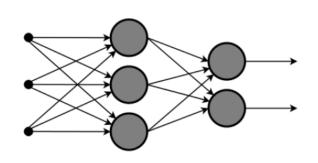
Why neural networks?

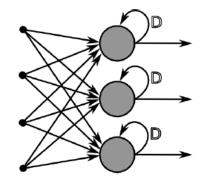
• It can learn...

small change in any weight (or bias) causes a small change in the output $\longrightarrow \longrightarrow \text{output} + \Delta \text{output}$

Why neural networks?

• There can be lots of variations (layouts)...

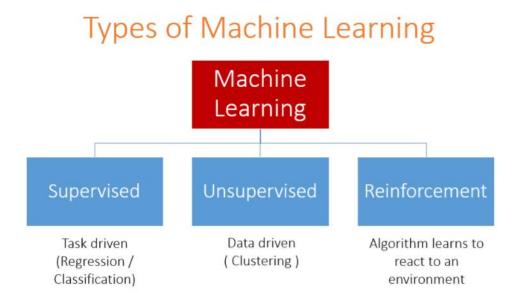




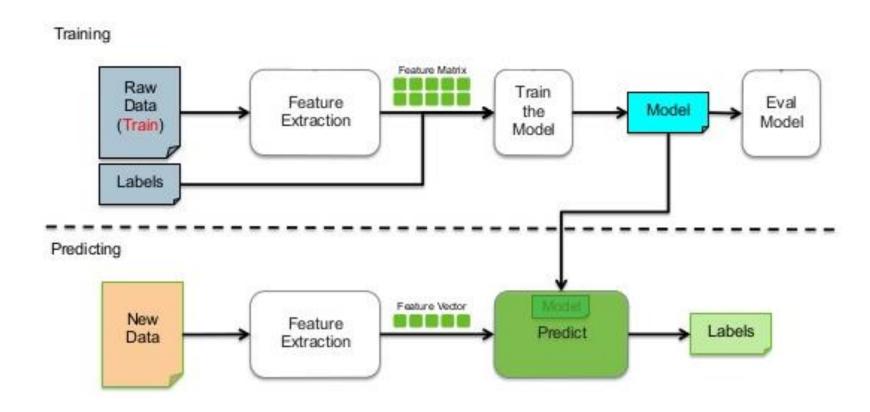
Recurrent Neural Network

Types of Machine Learning

- Supervised Learning
 - Classification/Regression
 - Semi-supervised Learning/Weakly supervised Learning/...
- Unsupervised Learning
 - Clustering
 - Feature Learning
 - Generative Model Learning
- Reinforcement Learning
 - Deep Q-Learning
 - Policy Gradient Learning



Supervised learning workflow



Supervised vs unsupervised

Supervised Learning

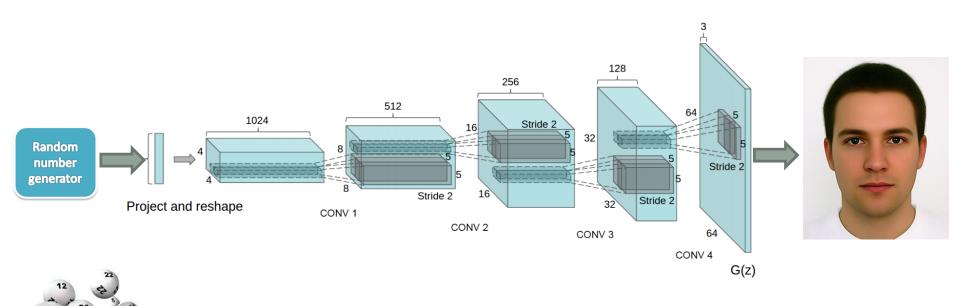
- **Data**: (x, y)
 - x is data, y is label
- Goal:
 - Learn a function to map x -> y
- Examples:
 - Classification, regression, object detection, semantic segmentation, image captioning, etc

Unsupervised Learning

- Data: x
 - Just data, no labels!
- Goal:
 - Learn some *structure* of the data
- Examples:
 - Clustering, dimensionality reduction, feature learning, generative models, etc

Unsupervised Learning

• Generative Model (Generative Adversarial Network)

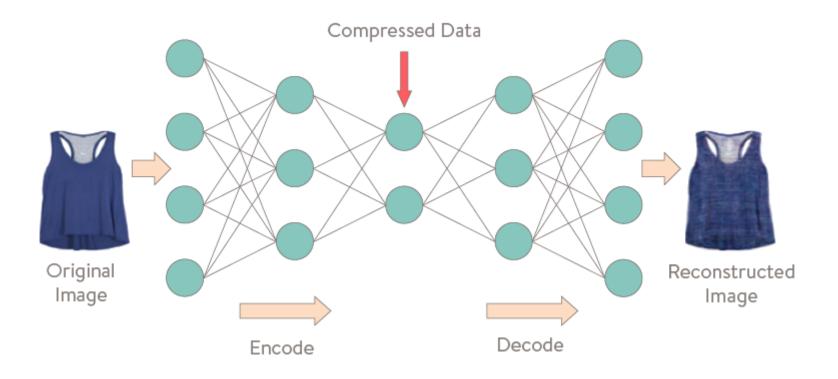


Unsupervised Learning

• Generative Model (Generative Adversarial Network)

Unsupervised Learning

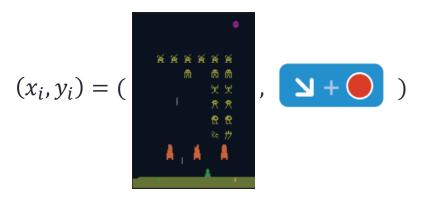
• Dimension Reduction/Feature Learning (Auto-Encoder)



Supervised vs Reinforcement

Supervised Learning

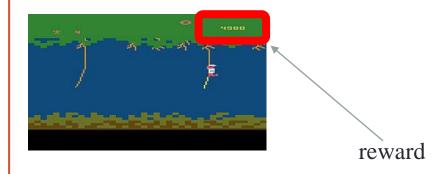
- **Data**: (x, y)
 - x is data, y is label
- Goal:
 - Learn a *function* to map x -> y
- Examples:



Game state

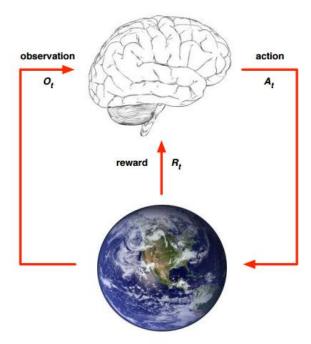
Joystick control

Reinforcement Learning

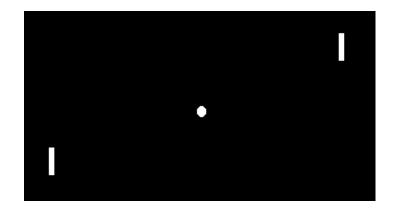


Reinforcement Learning

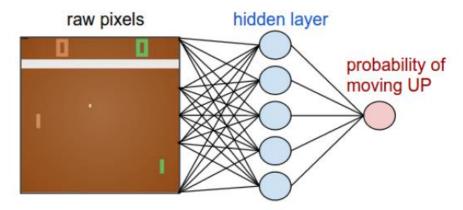
• Reinforcement learning is an area of machine learning concerned with how software **agents** ought to take actions in an environment so as to maximize some notion of cumulative reward.



Reinforcement Learning



Policy Network:



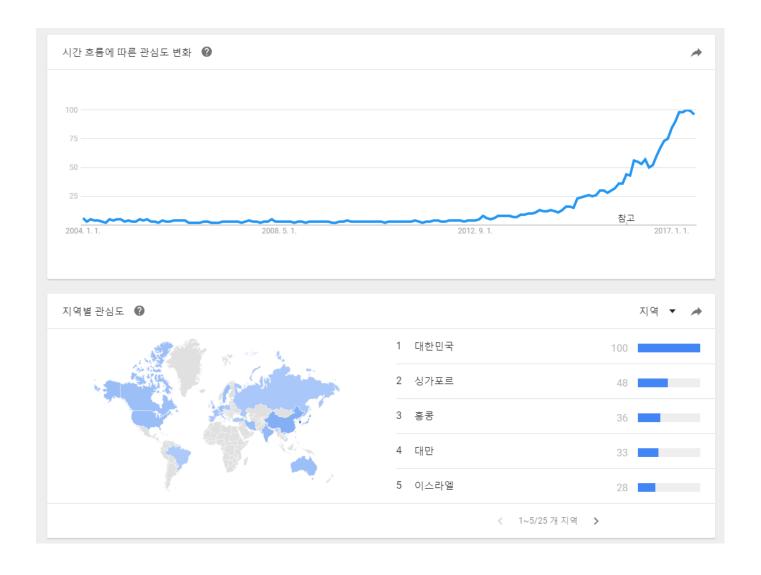
- 80x80 image (difference image)
- 2 actions: up or down
- 200,000 Pong games

This is a step towards general purpose artificial intelligence!

DEEP LEARNING

					Tasks						
						Self Driving					
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory	
	Traditional	Non-machine Learning		GPS, SLAM		Optimal control					
		ď	Supervised	SVM MLP		Pedestrian detection (HOG+SVM)					
Methods	Deep-Learning based	1achine-Le		CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning				
		Machine-Learning based method		RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning	Behavior Prediction/ Driver identificati on		*	
		netho		DNN					*	*	
		bd	Re	einforcement			*				
			U	nsupervised						*	

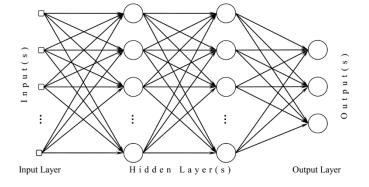
구글 트렌드: 딥러닝



Neural network Back propagation, Nature

1986

- 장점
 - 일반적인 문제에 적용할 수 있는 학습법
 - Biological 시스템과 관련이 깊음
- 문제점
 - Training 이 쉽지 않음
 - 현실적인 문제에 잘 동작하지 않음



Al Winters

Two major episodes:

- 1974-80
- 1987-93

Smaller episodes:

- 1966: the failure of machine translation
- 1970: the abandonment of connectionism
- 1971-75: DARPA's frustration with the Speech Understanding Research program
- 1973: the large decrease in AI research in the UK in response to the Lighthill report.
- 1973–74: DARPA's cutbacks to academic Al research in general
- 1987: the collapse of the Lisp machine market
- 1988: the cancellation of new spending on AI by the Strategic Computing Initiative
- 1993: expert systems slowly reaching the bottom
- 1990s: the quiet disappearance of the fifthgeneration computer project's original goals.

"In no part of the field have discoveries made so far produced the major impact that was then promised."

References: [18]

Neural network Back propagation,

Nature

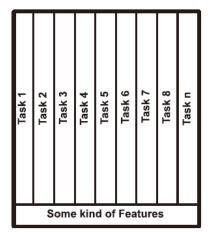
Non-linear SVM

1986

1992

- 다양한 시도들
 - Flat structure
 - SVM, Boosting, ...
 - Biological 시스템과 거리가 생김
 - 특정한 문제를 해결하는 특정한 방법 (SIFT, LBP, HOG, GMM-HMM)

Flat Processing Scheme



Neural network
Back propagation,
Nature

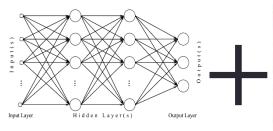
Deep belief network, Science

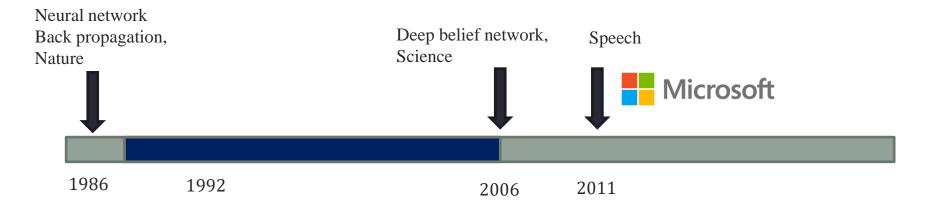
1986

1992

2006

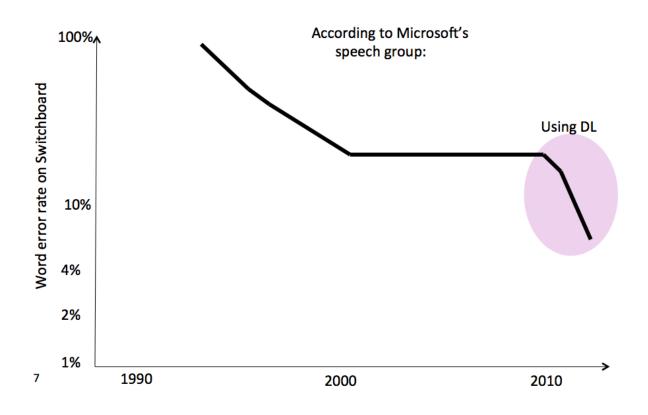
- 비지도 학습을 이용한 pre-training
- Training 방법 향상
 - Dropout, RectLinear, Normalization, ...
- 컴퓨터 구조의 발달
 - GPU
 - Multi-core computer 시스템
- 빅데이터

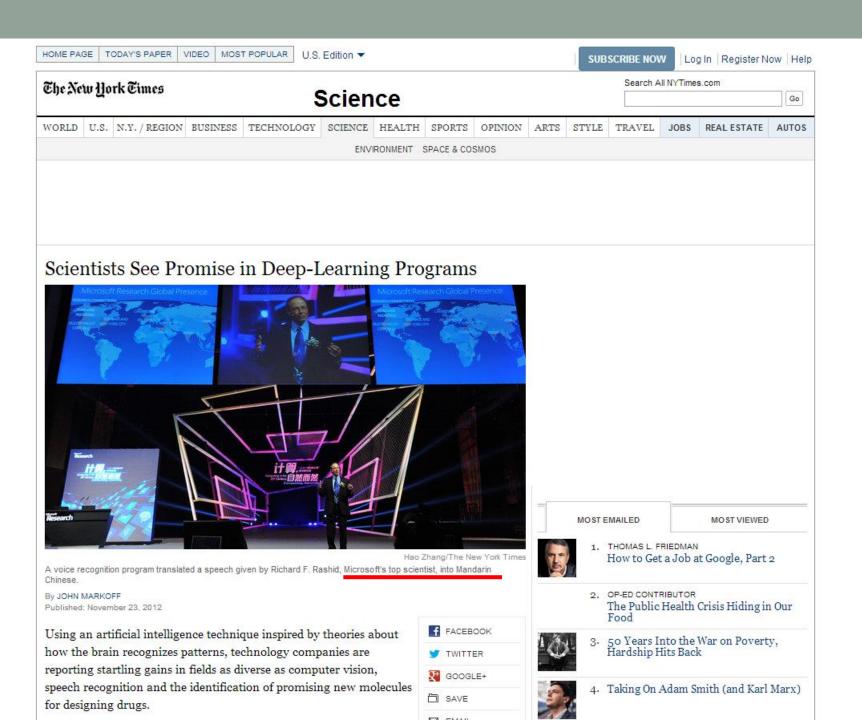


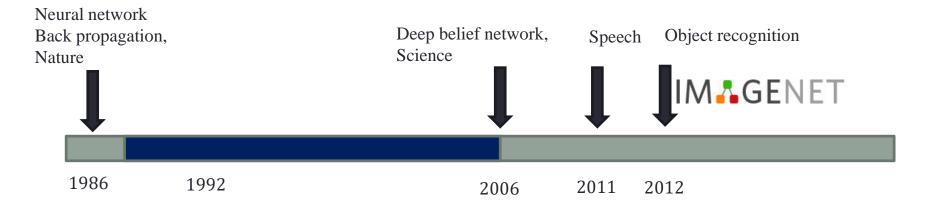


task	hours of	DNN-HMM	GMM-HMM	GMM-HMM
	training data		with same data	with more data
Switchboard (test set 1)	309	18.5	27.4	18.6 (2000 hrs)
Switchboard (test set 2)	309	16.1	23.6	17.1 (2000 hrs)
English Broadcast News	50	17.5	18.8	
Bing Voice Search	24	30.4	36.2	
(Sentence error rates)				
Google Voice Input	5,870	12.3		16.0 (>>5,870hrs)
Youtube	1,400	47.6	52.3	

음성 인식 성능







Submission	Method	Error rate	
Supervision	Deep CNN	0.16422	
ISI	FV: SIFT, LBP, GIST, CSIFT	0.26172	
XRCE/INRIA	FV: SIFT and color 1M-dim features	0.27058	
OXFORD_VGG	FV: SIFT and color 270K-dim features	0.27302	

ImageNet Large Scale Visual Recognition Competition (ILSVRC)

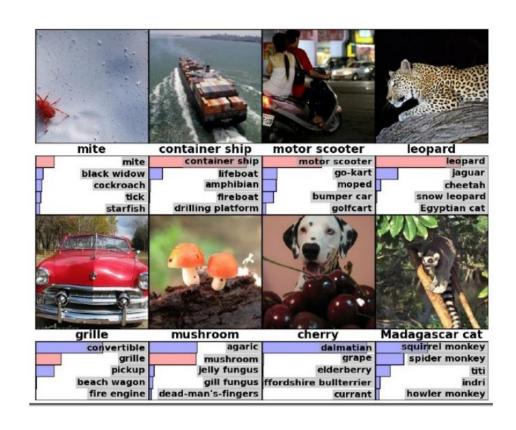
Steel drum

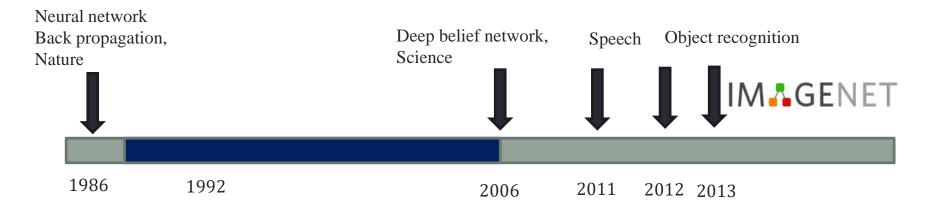
Output:

Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output:

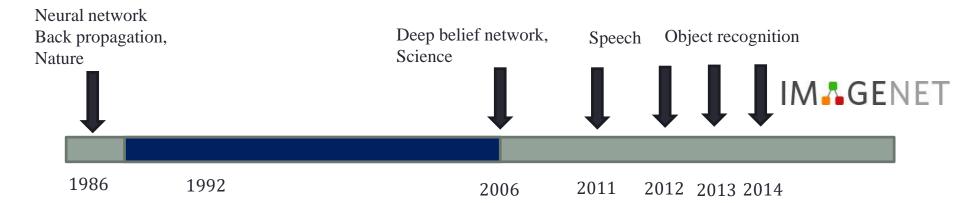
Scale
T-shirt
Giant panda
Drumstick
Mud turtle





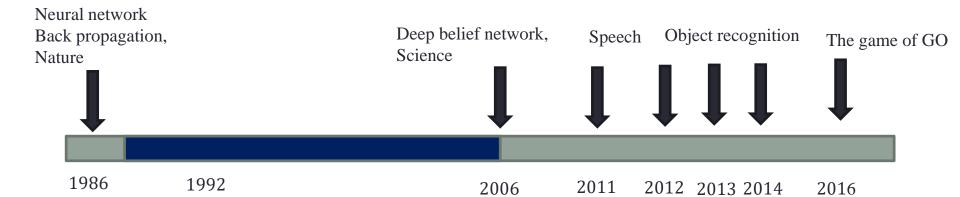
• IMAGENET 2013: 영상 인식

RANK	Name	Error rate	Description
1	NYU	0.11197	Deep Learning
2	NUS	0.12535	Deep Learning
3	OXFORD	0.13555	Deep Learning

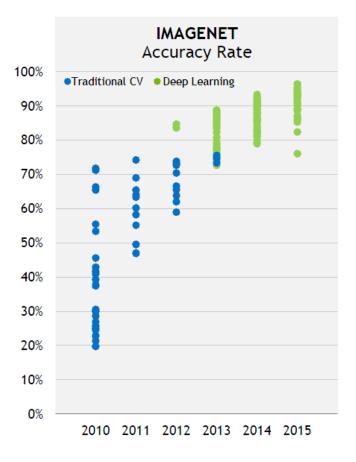


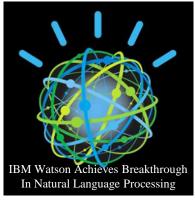
• IMAGENET 2013: 영상 인식

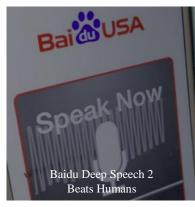
RANK	Name	Error rate	Description
1	Google	0.06656	Deep Learning
2	Oxford	0.07325	Deep Learning
3	MSRA	0.08062	Deep Learning



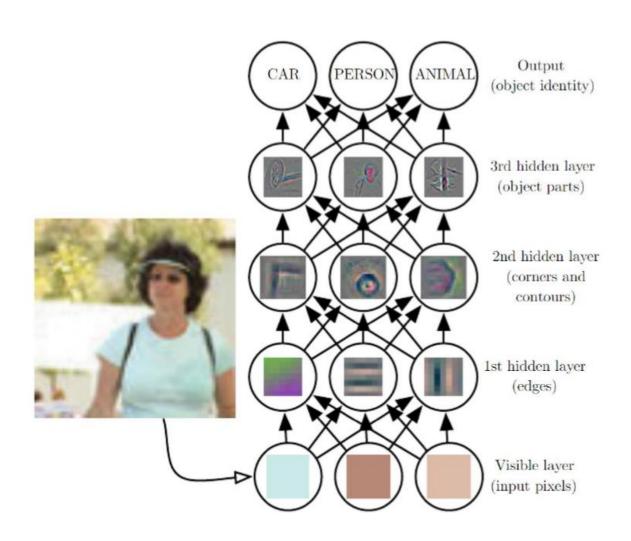
The Al race is on



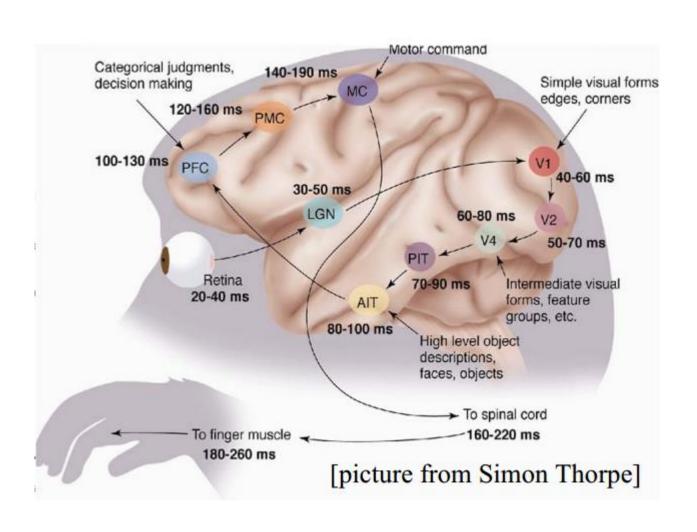




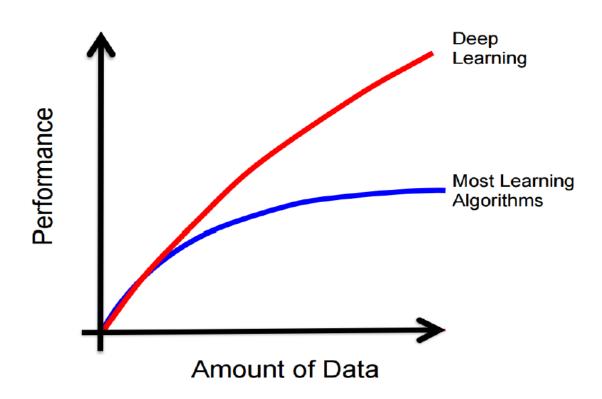
Deep Learning: Representation Learning



The Mammalian Visual Cortex is Hierarchical

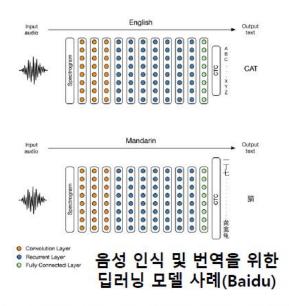


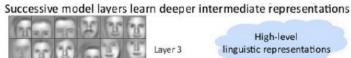
Deep Learning: Scalable Machine Learning

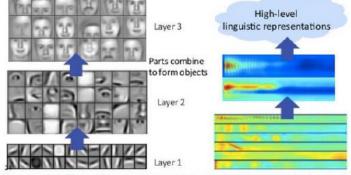


딥러닝 모델의 특징

- 다층구조 (multi layer)
 - 신경망의 구조 모사
 - 상위 층으로 갈 수록 추상화된 정 보가 학습과정에서 자동으로 생성
- 문제 해결과정자동화
 - End-to-end learning
 - 사람의 개입을 배제하고 오직 raw input과 output 사이에 모든 과정을 데이터에서 학습하는 방향 추구
- 분산 표현
 - Distributed representation
 - 여러 뉴런이 협력하여 정보 저장/처 리







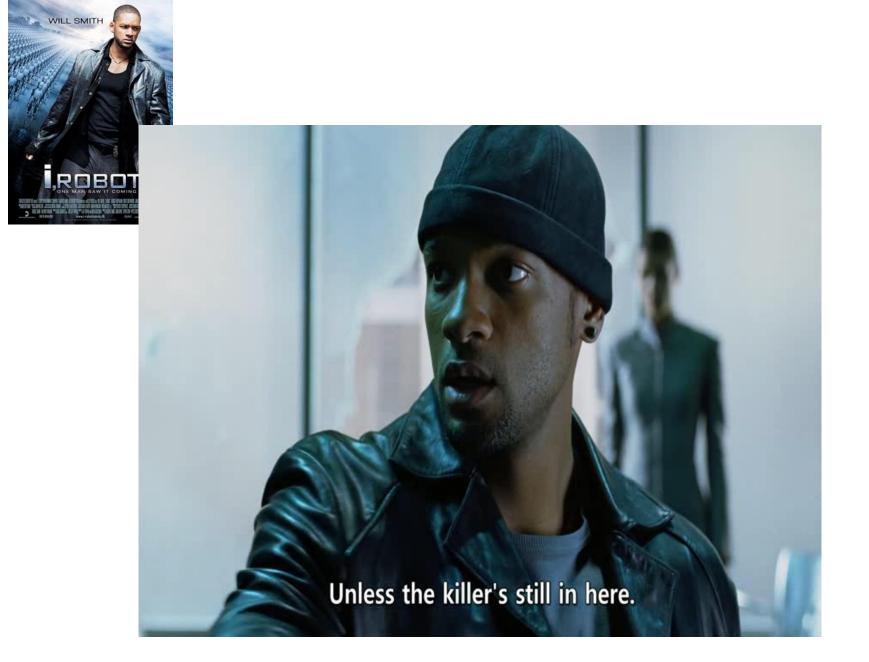
Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction

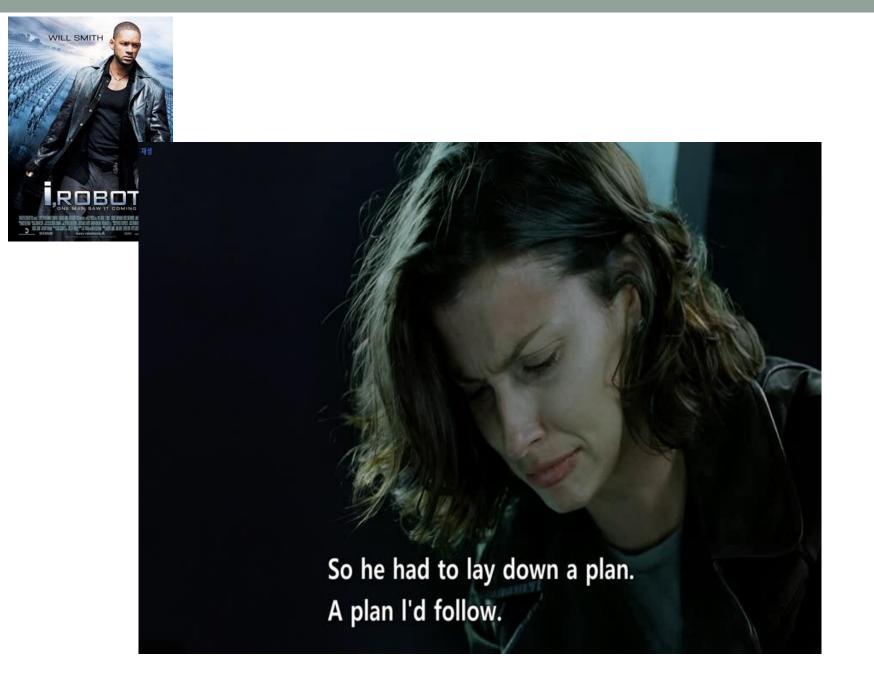
DRAWBACKS

Current Drawbacks

- Big data: inefficient at learning from data
- Supervised data: costly to annotate real-world data
- Need to manually select network structure
- Need to hyper-parameter tuning
 - Learning rate
 - Loss function
 - Mini-batch size
 - Number of training iterations
 - Momentum
 - Optimizer selection
- Defining a good reward function is difficult

Faulty Reward Functions in the Wild





BACKUPS

Clustering

AI역사

AI역사

MIT Technology Review

Aľs **Evolution**

The Manchester Small-Scale Experimental Machine is the first computer to execute a program stored in electronic memory.

Alan Turing's paper "Computing Machinery and "Logic Theorist," which Intelligence" introduces the concept of the Turing test.

Work begins on the many consider the first Al program. It proves 38 of the minds in the field and first 52 theorems in Principia coins the term "artificial Mathematica, an early-20th-century attempt to devise a set of rules for all mathematical truths.

John McCarthy organizes a conference at Dartmouth College with prominent intelligence."

The movie 2001: A Space Odyssey introduces a popular notion of Al through the computer HAL.

1968

1973

Sir James Lighthill reports to British officials on a "pronounced feeling of disappointment* in Al's accomplishments. The report supports declines in government funding during the "Al winter" of the 1970s and '80s.

IBM's Deep Blue supercomputer defeats world chess champion Garry Kasparov in a sixgame match. Kasparov had beaten IBM computers in two previous matches.

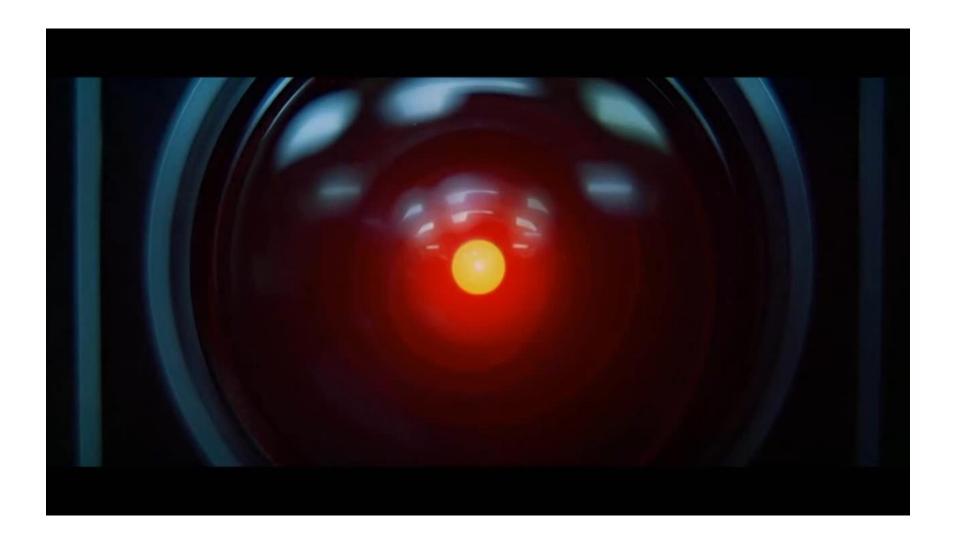
1997

2011

IBM's Watson wins Jeopardy!, defeating two of the game show's most successful contestants of all time.



I'm sorry Dave.



AI역사

MIT Technology Review

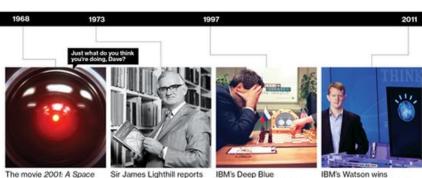
Aľs **Evolution**

The Manchester Small-Scale Experimental Machine is the first computer to execute a program stored in electronic memory.

Alan Turing's paper "Computing Machinery and "Logic Theorist," which Intelligence" introduces the concept of the Turing test.

Work begins on the many consider the first Al program. It proves 38 of the minds in the field and first 52 theorems in Principia coins the term "artificial Mathematica, an early-20th-century attempt to devise a set of rules for all mathematical truths.

John McCarthy organizes a conference at Dartmouth College with prominent intelligence."



Sir James Lighthill reports to British officials on a popular notion of Al through "pronounced feeling of disappointment* in Al's accomplishments. The report supports declines in government funding during the "Al winter" of the 1970s and '80s.

Odyssey introduces a

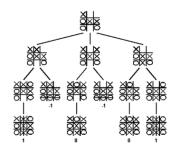
the computer HAL.

IBM's Deep Blue supercomputer defeats world chess champion Garry Kasparov in a sixgame match. Kasparov had beaten IBM computers in two previous matches.

IBM's Watson wins Jeopardy!, defeating two of the game show's most successful contestants of all time.

딥블루

- 딥블루 vs 게리 카스파로프, 1997
 - Deep Blue vs Kasparov
 - $3\frac{1}{2}$ vs $2\frac{1}{2}$
 - Brute-force search power
 - 6~8 수를 내다봄



AI역사

MIT Technology Review

Aľs **Evolution**

The Manchester Small-Scale Experimental Machine is the first computer to execute a program stored in electronic memory.

Alan Turing's paper "Computing Machinery and "Logic Theorist," which Intelligence" introduces the concept of the Turing test.

Work begins on the many consider the first Al program. It proves 38 of the minds in the field and first 52 theorems in Principia coins the term "artificial Mathematica, an early-20th-century attempt to devise a set of rules for all mathematical truths.

John McCarthy organizes a conference at Dartmouth College with prominent intelligence."

The movie 2001: A Space Odyssey introduces a popular notion of Al through the computer HAL.

1968

1973

Sir James Lighthill reports to British officials on a "pronounced feeling of disappointment* in Al's accomplishments. The report supports declines in government funding during the "Al winter" of the 1970s and '80s.

IBM's Deep Blue supercomputer defeats world chess champion Garry Kasparov in a sixgame match. Kasparov had beaten IBM computers in two previous matches.

1997

2011

IBM's Watson wins Jeopardy!, defeating two of the game show's most successful contestants of all time.

IBM Watson 슈퍼컴퓨터

• 질문예시)

- Kathleen kenyon's excavation of this city mentioned in joshua showed the wall had been repaired 17 times
 - WHAT is "Jericho"
- This child star got his first onscreen kiss in "MY GIRL"
 - WHO is "Macaulay Culkin"

AI역사

MIT Technology Review

Al's **Evolution**

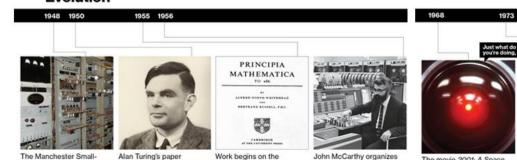
Scale Experimental

Machine is the first

computer to execute

a program stored in

electronic memory.



"Computing Machinery and "Logic Theorist," which Intelligence" introduces the many consider the first Al program. It proves 38 of the minds in the field and first 52 theorems in Principia coins the term "artificial Mathematica, an early-20th-century attempt to devise a set of rules for all mathematical truths.

concept of the Turing test.

John McCarthy organizes a conference at Dartmouth College with prominent intelligence."

The movie 2001: A Space Odyssey introduces a popular notion of Al through "pronounced feeling of the computer HAL.

Sir James Lighthill reports to British officials on a disappointment* in Al's accomplishments. The report supports declines in government funding during the "Al winter" of the 1970s and '80s.

IBM's Deep Blue supercomputer defeats world chess champion Garry Kasparov in a six-

1997

game match. Kasparov had of all time. beaten IBM computers in two previous matches.

2011

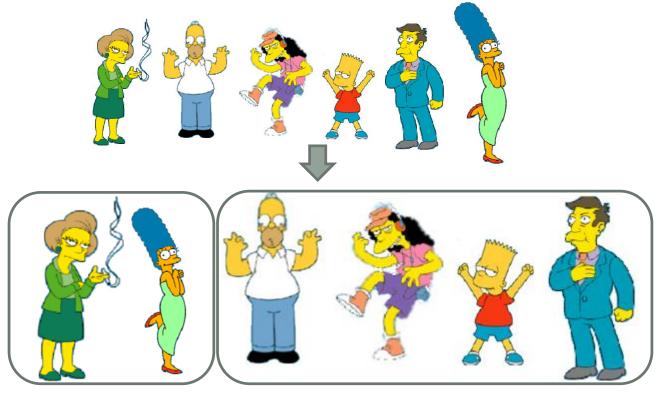
2016

IBM's Watson wins Jeopardy!, defeating two of the game show's most successful contestants

CLUSTERING

Unsupervised Learning

- Clustering
 - To group the object having same feature

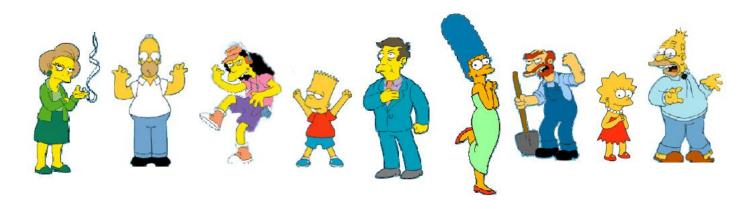


Female group

male group

Unsupervised Learning

Clustering



Clustering is subjective



Simpson's Family

School Employees

Females

Males

Clustering Example

