INTRODUCTION TO
LSTM

R - :
LSTM

- Most popular recurrent node type is Long Short Term Memory
(LSTM)

- LSTM includes also gates, which can turn on/off the history and
a few additional inputs.

LSTM block

block output A

/ Legend \

—— connection

- - delayed connection

@ hyperbolic tangent

@ logistic function

® multiplication

block input i; = o(W¥x; + Wh,_; + Weic,_, + bi)
f, = o(W¥x, + W"h,_; + W,_; + b')
c; = fici—1 + iy tanh (W x; + W™h;_; + b°)
o; = o(W*x; + Whh,_, + W*¢, + b?)
h, = o; tanh(c;)

X

outputs

effective
weight

identity

function

e

Inputs

memory cell

input

forget gate
| self-recurrent

SRR sttt

S — ..| ' memary cell
aukput

Input gate output gate

N

s hY’ ==
output squashing h(Sc) ouput gate

A :
S.=S8.Y+§g yi"@ b/ =w, net
memorizing and forgetting forget garj-‘-L_-‘- '
inpur gai g y i_—-!_'iig________netin

input gat
wpasqsins @ (et) () e

/ *
“l’c
net,

X

outputs

effective
weight

identity

function

e

Inputs

memory cell

input

forget gate
| self-recurrent

SRR sttt

S — ..| ' memary cell
aukput

Input gate output gate

N

s hY’ ==
output squashing h(Sc) ouput gate

A :
S.=S8.Y+§g yi"@ b/ =w, net
memorizing and forgetting forget garj-‘-L_-‘- '
inpur gai g y i_—-!_'iig________netin

input gat
wpasqsins @ (et) () e

/ *
“l’c
net,

RNN

@® colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN

b o

L
Repeating module in RNN

@® colah.github.io/posts/2015-08-Understanding-LSTMs/

L
Repeating module in LSTM
@ ® >
t t

O—P>—b—<

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

@® colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM MOTIVATIONS

Problems of Long-term dependencies

- One of the appeals of RNNs is the idea that they might be able
to connect previous information to the present task

- Example: the prediction of the next word based on the previous
ones
- “the clouds are in the sky,”

®)
!
A

& ®
1
» A —» A
b & o

®

h
i

@—>—@

@® colah.github.io/posts/2015-08-Understanding-LSTMs/

Problems of Long-term dependencies
- Large gap between the relevant information and the place that

it’s needed
- “I grew up in France... I speak fluent French.”

I
A

!
b

A 0 0
6 . & & b

@® colah.github.io/posts/2015-08-Understanding-LSTMs/

Training recurrent networks

&1 & Eis
D = = (k=
Xi—1 ——— X ’ Xi+1 -—
e = S R
Uy X
Uy Ty LS
x: = F(X¢—1,u¢,0) 00 S2r 9
s (200
Xy = Wreca(xt—l) + Wmut + b 00 1<k<t 0x: Ox. 00
3xt Bxi T . !
P = W, ccdiag(o'(xi-1))
O tZ'a]lk O%;—1 tzgk

Exploding and vanishing gradients

- The exploding gradients problem
- the large increase in the norm of the gradient during training.

- The vanishing gradients
- long term components go exponentially fast to norm 0

D
On the difficulty of training RNN

On the difficulty of training recurrent neural networks

Razvan Pascanu PASCANUR@IRO.UMONTREAL.CA
Université de Montréal, 2920, chemin de la Tour, Montréal, Québec, Canada, H3T 1J8

Tomas Mikolov T.MIKOLOV@GMAIL.COM
Speech@FIT, Brno University of Technology, Brno, Czech Republic

Yoshua Bengio YOSHUA.BENGIO@UMONTREAL.CA
Université de Montréal, 2920, chemin de la Tour, Montréal, Québec, Canada, H3T 1J8

Hochreiter and Schmidhuber (1997); Graves et al.
(2009) propose the LSTM model to deal with the van-
ishing gradients problem. It relies on special type of
linear unit with a self connection of value 1. The flow
of information into and out of the unit is guarded by
learned input and output gates. There are several vari-
ations of this basic structure. This solution does not

address explicitly the exploding gradients problem.

CORE IDEA BEHIND LSTMS

L
Cell state

- Cell state

- It runs straight down the entire chain, with linear interactions.

- LSTM has the ability to remove or add information to the cell state,
regulated by gates.

@® colah.github.io/posts/2015-08-Understanding-LSTMs/

L
Gates

- Gates are a way to optionally let information through
- a sigmoid neural net layer and a pointwise multiplication operation.

- The sigmoid layer outputs numbers between zero and one, describing how
much of each component should be let through.
+ Avalue of zero means “let nothing through,”
+ Avalue of one means “let everything through”

—®—
!
|

@® colah.github.io/posts/2015-08-Understanding-LSTMs/

STEP-BY-STEP LSTM WALK THROUGH

Forget gate layer

- Forget gate
- to decide what information we’re going to throw away from the cell state
- this decision is made by a sigmoid layer called the “forget gate layer.”

It ft=0Wg-|hi—1,2:] + by)

Tt

@® colah.github.io/posts/2015-08-Understanding-LSTMs/

Forget gate layer

- ft = 1: completely keep this information
- fr = 0: completely get rid of this information

- Ex) Language model example
- When we a new subject, we want to forget the gender information in C;_;

It ft=0Wg-|hi—1,2:] + by)

Tt

@® colah.github.io/posts/2015-08-Understanding-LSTMs/

D
Input gate layer

- Input gate
- 1o decide what new information we’re going to store in the cell state
- a sigmoid layer called the “input gate layer” decides which values we’ll

update
| it =0 (Wi |hi—1,2¢] + ;)
h ’_cg?;nh C; = tanh(We-[hi—1, 7] + bc)
t—1 | J

L

@® colah.github.io/posts/2015-08-Understanding-LSTMs/

L
Cell sate update

- We multiply the old state by f;, forgetting the things we decided
to forget earlier. Then we add i, * C,.

- In the case of the language model, this 1s where we’d actually
drop the information about the old subject’s gender and add the
new Information, as we decided in the previous steps.

ftT %tr'%§ Ci = fixCr—1 + iy % Cy

L
Output

- We run a sigmoid layer which decides what parts of the cell
state we’re going to output.

- Then, we put the cell state through tanh (to push the values to
be between —1 and 1) and multiply it by the output of the
sigmoid gate, so that we only output the parts we decided to.

Ot =0 (Wo [ht—lawt] + bo)
ht = Ot * tanh (Ct)

@® colah.github.io/posts/2015-08-Understanding-LSTMs/

L
Output

- For the language model example, since It just saw a subject, it
might want to output information relevant to a verb.

- For example, it might output whether the subject is singular or
plural, so that we know what form a verb should be conjugated
Into.

Ot =0 (Wo [ht—lawt] + bo)
ht = Ot * tanh (Ct)

@® colah.github.io/posts/2015-08-Understanding-LSTMs/

VARIANTS OF LONG
SHORT TERM MEMORY

Peephole connection

- Let the gate layers look at the cell state.

ft =0 (Ws-[Ceo1,hi—1, 2] + by)
it = 0 (Wi [Cie1,hi—1, 2] + b;)
or =0 (Wy-[Ct, he—1, 2] + bo)

Coupled forget and input gates

- We only forget when we’re going to input something 1n its place.
We only input new values to the state when we forget something
older.

I?,{A

Ct:ft*ct—1+(1_ft)*ét

Gated Recurrent Unit

- It combines the forget and input gates into a single “update gate.”
It also merges the cell state and hidden state, and makes some
other changes.

ze =0 (W, [hi—1,24])

Fbt = tﬂﬂh(W g [ht—ljmf])

ht:(l_zt)*ht—1+zt*ﬁt

Gated Recurrent Unit

- It combines the forget and input gates into a single “update gate.”
It also merges the cell state and hidden state, and makes some
other changes.

Rt = O (Wz : [ht—lamt])
ry = U(Wr . [ht—lawt])
h; = tanh (W - [ry * hy_1,24))

he = (1 — 2) x hy_1 + 24 * hy

VARIANTS OF LSTM -
BLOCK DIAGRAMS

Legend
nmweighted connection
weighted comnection
connection with time-lag
mutlinlicati
sum over all inputs
gate activation function
(always sigmoid)
input activation function
{usually tanh)
output activation function
(usually tanh)

Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used
in the hidden layers of a recurrent neural network.

— State

NET OUTPUT

OUTPUT GATE

FORGET GATE

INPUT GATE

NET INPUT

Input Gate

OQutputs

effective
weight
identity
l function

forget /

input

Inputs

D
Example

- W/0 peephole connection
- w/__peephole connection

RNN_basic.html
RNN_peephole.html

L
Summary

- RNNs allow a lot of flexibility in architecture design

- Common to use LSTM or GRU: their additive interactions
Improve gradient flow

- Backward flow of gradients in RNN can explode or vanish.

- Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

