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LSTM

- Most popular recurrent node type is Long Short Term Memory
(LSTM)

- LSTM includes also gates, which can turn on/off the history and
a few additional inputs.
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RNN
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Repeating module in RNN
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Repeating module in LSTM
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LSTM MOTIVATIONS




Problems of Long-term dependencies

- One of the appeals of RNNs is the idea that they might be able
to connect previous information to the present task

- Example: the prediction of the next word based on the previous
ones
- “the clouds are in the sky,”
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Problems of Long-term dependencies
- Large gap between the relevant information and the place that

it’s needed
- “I grew up in France... I speak fluent French.”
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Training recurrent networks
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Exploding and vanishing gradients

- The exploding gradients problem
- the large increase in the norm of the gradient during training.

- The vanishing gradients
- long term components go exponentially fast to norm 0
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On the difficulty of training RNN

On the difficulty of training recurrent neural networks
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Hochreiter and Schmidhuber (1997); Graves et al.
(2009) propose the LSTM model to deal with the van-
ishing gradients problem. It relies on special type of
linear unit with a self connection of value 1. The flow
of information into and out of the unit is guarded by
learned input and output gates. There are several vari-
ations of this basic structure. This solution does not

address explicitly the exploding gradients problem.




CORE IDEA BEHIND LSTMS
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Cell state

- Cell state

- It runs straight down the entire chain, with linear interactions.

- LSTM has the ability to remove or add information to the cell state,
regulated by gates.
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L
Gates

- Gates are a way to optionally let information through
- a sigmoid neural net layer and a pointwise multiplication operation.

- The sigmoid layer outputs numbers between zero and one, describing how
much of each component should be let through.
+ Avalue of zero means “let nothing through,”
+ Avalue of one means “let everything through”
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STEP-BY-STEP LSTM WALK THROUGH




Forget gate layer

- Forget gate
- to decide what information we’re going to throw away from the cell state
- this decision is made by a sigmoid layer called the “forget gate layer.”

It ft=0Wg-|hi—1,2:] + by)
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Forget gate layer

- ft = 1: completely keep this information
- fr = 0: completely get rid of this information

- Ex) Language model example
- When we a new subject, we want to forget the gender information in C;_;

It ft=0Wg-|hi—1,2:] + by)
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Input gate layer

- Input gate
- 1o decide what new information we’re going to store in the cell state
- a sigmoid layer called the “input gate layer” decides which values we’ll

update
| it =0 (Wi |hi—1,2¢] + ;)
h ’_cg?;nh C; = tanh(We-[hi—1, 7] + bc)
t—1 | J
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L
Cell sate update

- We multiply the old state by f;, forgetting the things we decided
to forget earlier. Then we add i, * C,.

- In the case of the language model, this 1s where we’d actually
drop the information about the old subject’s gender and add the
new Information, as we decided in the previous steps.

ftT %tr'%§ Ci = fixCr—1 + iy % Cy
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Output

- We run a sigmoid layer which decides what parts of the cell
state we’re going to output.

- Then, we put the cell state through tanh (to push the values to
be between —1 and 1) and multiply it by the output of the
sigmoid gate, so that we only output the parts we decided to.

Ot =0 (Wo [ht—lawt] + bo)
ht = Ot * tanh (Ct)
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L
Output

- For the language model example, since It just saw a subject, it
might want to output information relevant to a verb.

- For example, it might output whether the subject is singular or
plural, so that we know what form a verb should be conjugated
Into.

Ot =0 (Wo [ht—lawt] + bo)
ht = Ot * tanh (Ct)
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VARIANTS OF LONG
SHORT TERM MEMORY




Peephole connection

- Let the gate layers look at the cell state.

ft =0 (Ws-[Ceo1,hi—1, 2] + by)
it = 0 (Wi [Cie1,hi—1, 2] + b;)
or =0 (Wy-[Ct, he—1, 2] + bo)




Coupled forget and input gates

- We only forget when we’re going to input something 1n its place.
We only input new values to the state when we forget something
older.

I?,{A

Ct:ft*ct—1+(1_ft)*ét




Gated Recurrent Unit

- It combines the forget and input gates into a single “update gate.”
It also merges the cell state and hidden state, and makes some
other changes.

ze =0 (W, [hi—1,24])

Fbt = tﬂﬂh(W g [ ht—ljmf])

ht:(l_zt)*ht—1+zt*ﬁt




Gated Recurrent Unit

- It combines the forget and input gates into a single “update gate.”
It also merges the cell state and hidden state, and makes some
other changes.

Rt = O (Wz : [ht—lamt])
ry = U(Wr . [ht—lawt])
h; = tanh (W - [ry * hy_1,24))

he = (1 — 2) x hy_1 + 24 * hy




VARIANTS OF LSTM -
BLOCK DIAGRAMS




Legend
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Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used
in the hidden layers of a recurrent neural network.
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Example

- W/0 peephole connection
- w/__peephole connection



RNN_basic.html
RNN_peephole.html

L
Summary

- RNNs allow a lot of flexibility in architecture design

- Common to use LSTM or GRU: their additive interactions
Improve gradient flow

- Backward flow of gradients in RNN can explode or vanish.

- Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

Fei-Fei Li & Andrej Karpathy & Justin Johnson



