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RNN INTRODUCTION




Recurrent Neural Network
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Repeating module in RNN

@® colah.github.io/posts/2015-08-Understanding-LSTMs/



Repeating module in LSTM
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:
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Fei-Fei Li & Andrej Karpathy & Justin Johnson



Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy = fW(h’t—la 51%)

Notice: the same function and the same set X
of parameters are used at every time step.

Fei-Fei Li & Andrej Karpathy & Justin Johnson



FLEXIBILITY OF RNN
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RNN offers a lot of flexibility

one to one one to many many to one many to many many to many

Video
Classification
on Frame Level

Vanilla Im_agg Sentiment Machine
N.N. Captioning Classification Translation

Fei-Fei Li & Andrej Karpathy & Justin Johnson



TRAINING
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Training

- Backpropagation through time (BPTT)
- Unfold and apply SGD
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Human Activity Recognition




HAZ2E

- LSTM

- Seq25eq



%5bex%5dHumanActivityRecognition/LSTM_Human_Activity.html
%5bex%5dSeq2Seq/encoder_decoder_example_istate++.html

APPLICATIONS




CAR THAT KNOWS BEFORE YOU DO VIA
SENSORY-FUSION DEEP LEARNING
ARCHITECTURE

ICCV 2015, Cornell Univ., Stanford Univ., Brain
Of Things Inc
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L
Overview

- An approach for anticipating driving maneuvers, several
seconds in advance: lane change, keeping straight, turn, ...

- Generic sensory-fusion RNN-LSTM architecture for
anticipation in robotics applications
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Demo Video

Car That Knows Before You Do

Ashesh Jain, Hema S Koppula, Bharad Raghavan,
Shane Soh, Avi Singh and Ashutosh Saxena

Department of Computer Science
Cornell University & Stanford University

https://youtu.be/O511hBwkwJc



https://youtu.be/O5I1hBwkwJc

(b) Vision Algorithms (c) Inside and Outside Vehicle Features (d) Model (e) Anticipation
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Driver-facing camera inside the vehicle
Camera facing the road

Speed logger of the car

Global Positioning System (GPS)
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Features

(b) Vision Algorithms (c) Inside and Outside Vehicle Features (d) Model (e) Anticipation
- “ o Left lane
softmax OO 00 )
X_ I .07 Fill O O O O = Right Lane
g usion
Face camera s — ' t = ] Righbt turn
- B Straight
LSTM
x ’ Networks
Road camera ' ' I I
Input: Videos, GPS Face detection & Feature Inside Outside
Speed & Maps Tracking feature points Motion of facial points Outside context vector Features  Features

1. Face detection and tracking:

- Driver’s face: Viola Jones face detector

- Point extract: Shi-Tomasi corner detector

- Facial points tracker: KLT(Kanade-Lucas-Tomasi)
2. Head motion features (¢sqce € R?):

- histogram features are used
- matches facial points and
create histograms of corresponding horizontal motions

3. 3D head pose and facial landmark features(¢ 4. € R'?): CLNF tracker model
= Aggregate ¢4, for every 20 frames



Network Architecture — at a
glance

(a) Setup (b) Vision Algorithms (c) Inside and Outside Vehicle Features (d) Model (e) Anticipation
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LSTM units is used for training
- - consider accumulated information from the past:

Xt: observation at time t
noted as event {(Xy, Xy, ..., X7), ¥} (y:representation of the event)

- y¢ is updated as y; = softmax(Wyh, + by),
with the representation hy = f(Wx; + Hh,_; + b)
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Data set

- Fully natural driving
- 1180 miles of natural freeway, city driving

- Collected across two states

- Ten drivers, different kinds of driving maneuvers
- 2 months to take
- About 17GB

- 700 events of annotation e ‘
- 274 lane change o
- 131 turns
- 295 straight
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Result

- With sensory fusion:
- Precision of 84.5%
- Recall of 77.1%
- Anticipates maneuvers 3.5 seconds on average

- With incorporating the driver’s 3D head-pose:
- Precision of 90.5%
- Recall of 87.4%

- Anticipates maneuvers 3.16 seconds on average

Method Pr (%) Re (%) ~ Lmeto-
maneuver (S)

F-RNN-EL 845 £ 10 77113 3.58

F-RNN-EL w/ 3D head-pose 905 £+ 1.0 874 + 0.5 3.16



CHARACTERIZING DRIVING STYLES
WITH DEEP LEARNING

W. Dong et al.
ArXiv 2016

IBM Research China, Nanjing Univ., Univ. of
Waterloo
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Overview

Minimum

Maximum Classification Driver

First quartile

model identification

- Second quartile
difference of

acceleration norm Third quartile

Standard deviation

Extracted 35 features

5 =

GPS on vehicles
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Data

=¥: GPSH|0|E{= 0| =25}10{ A=K} ID 25 ¢l
Input sensor
- GPS trajectory as a sequence (X, Y, t)

Dataset and feature map

- Training/Test data

- Data from 50/1,000 drivers (original data: Kaggle 2015 competition on
Driver Telematics Analysis)

- Data transformation

- Feature map (35=5x 7)

* Basic features (5)
:Speed norm; difference of speed norm; acceleration norm; difference of
acceleration norm; angular speed

- Statistical features (7)
:mean; min; max; % : % : % : standard deviation of each basic feature
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Machine Learning .
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< Frarmes over Time >

- RNN

- RNN mOdel Figure 3: 1-D eonvolution and pooling in CNN

- Gradient boosting decision tree (GBDT)
- For reference
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Figure 4: RNN training on the input statistical feature
matrix



D
Experimental Results

- Experiments
- 80% for training, 20% for testing

- Small scale test for 50 drivers data
- Include 35,000 segments from 8,000 trips

- large scale test for 1,000 drivers data

Table 1: Results on 50 drivers’ data Table 2: Results on 1000 drivers’ data
Method Seg (%) Trip (%) Trip Top-5 (%) Method Seg (%) Trip (%)  Trip Top-5 (%)
NoPoolCNN 16.9 28.3 56.7 CNN 23.4 26.7 46.7
CNN 21.6 34.9 63.7 StackedIRNN 27.5 40.5 60.4
PretrainlRNN 28.2 44.6 70.4 TripGBDT - 9.2 15.8
IRNN 34.7 49.7 76.9
StackedIRNN 34.8 52.3 77.4
GBDT 18.3 29.1 55.9

TripGBDT - 51.2 74.3




DETECTING ROAD SURFACE
WETNESS
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Dataset/Machine Learning

- Shotgun microphone behind the rear tire
- Spectogram + LSTM

- £HH T AL

- http://www.ibtimes.co.uk/heres-how-self-driving-cars-can-detect-
dangerous-roads-using-sound-ai-1532407



http://www.ibtimes.co.uk/heres-how-self-driving-cars-can-detect-dangerous-roads-using-sound-ai-1532407

Detecting Road Surface wetness

Detecting Road Surface Wetness from Audio:
A Deep Learning Approach

— JMAGELABM




END-TO-END DRIVING WITH RNNS
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End-to-end Driving with RNNs

- 1stand 3" place winner of the Udacity end-to-end steering
competition used RNNSs:
- Sequence-to-sequence mapping from images to steering angles

- E

e e

- https://medium.com/udacity/challenge-2-using-deep-learning-to-predict-
steering-anqgles-f42004a36ff3

- https://medium.com/udacity/teaching-a-machine-to-steer-a-car-
d73217f2492¢

UDACITY

Self-Driving Car Engineer Nanodegree


https://medium.com/udacity/challenge-2-using-deep-learning-to-predict-steering-angles-f42004a36ff3
https://medium.com/udacity/teaching-a-machine-to-steer-a-car-d73217f2492c
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1st Place Winner

- LSTM inputs: 3D convolution of image sequence
- Outputs: predicted steering angle, speed, torque
- Sequence length =10

Actual = 0.08203. Predicled = 0.07418




3rd Place Winner

- LSTM inputs: 3000 features extracted with CNN
- Outputs: predicted steering angle
- Sequence length =10

Actual = -0.04887, Predicted = 0.01188



ANTICIPATING ACCIDENTS IN
DASHCAM VIDEOS
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Training set 1284
Testing set 165 301 466
Total 620 1130 1730

Positive example Negative example
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