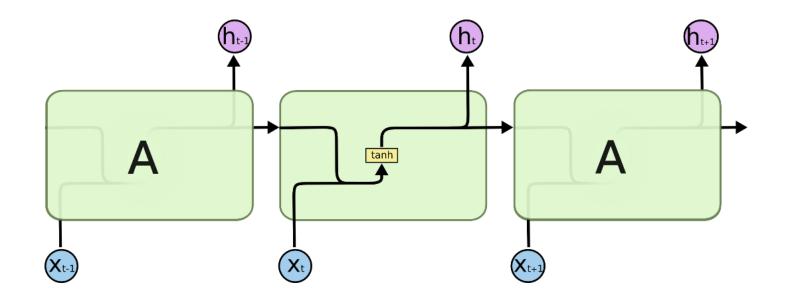
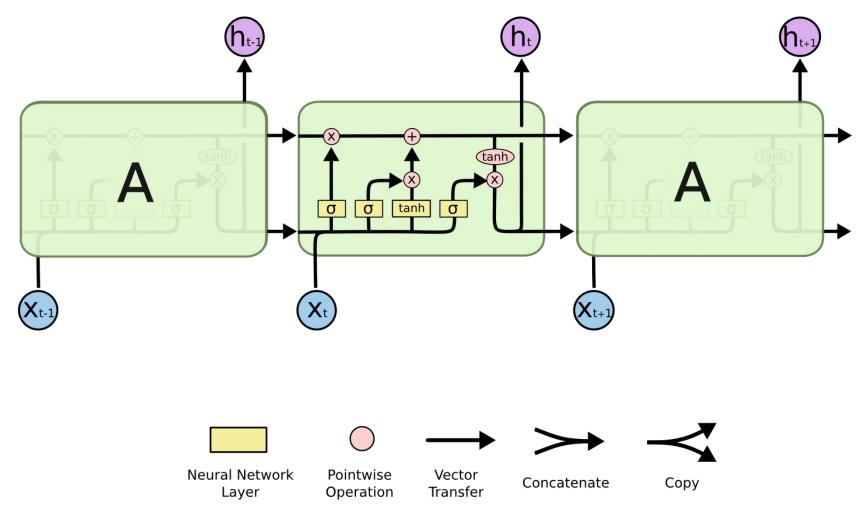

RECURRENT NEURAL NETWORKS

						Tasks					
						ADAS					
						Self Driving					
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory	
	Traditional	Non-	Non-machine Learning		GPS, SLAM		Optimal control				
				SVM MLP		Pedestrian detection (HOG+SVM)					
Me	De	Iachine-Le:	Supervised	CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning				
Methods	Deep-Learning b	Machine-Learning based method	vised	RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning	Behavior Prediction/ Driver identificati on		*	
	based	nethc		DNN					*	*	
		d	Re	einforcement			*				
			U	nsupervised						*	

RNN INTRODUCTION


Recurrent Neural Network


i colah.github.io/posts/2015-08-Understanding-LSTMs/

Repeating module in RNN

i colah.github.io/posts/2015-08-Understanding-LSTMs/

Repeating module in LSTM

i colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Network

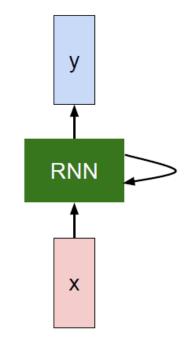
We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

new state / old state input vector at some time step some function with parameters W

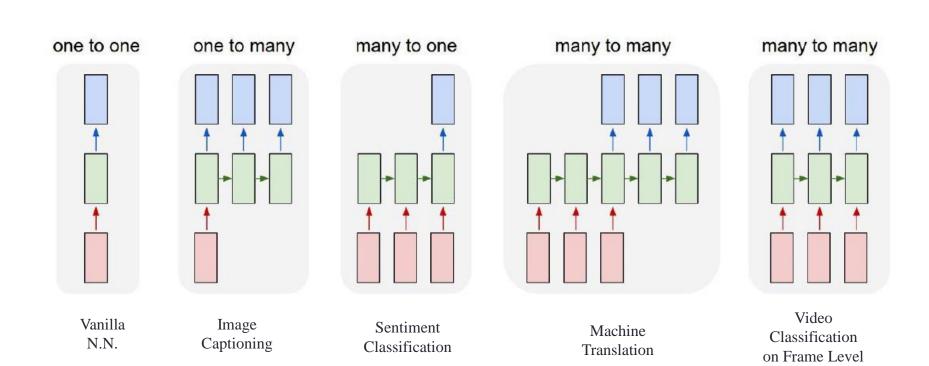
y

RNN


Х

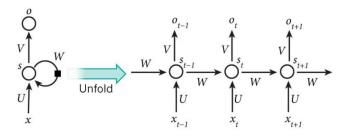
Recurrent Neural Network

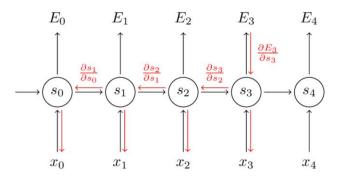
We can process a sequence of vectors **x** by applying a recurrence formula at every time step:


$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.

FLEXIBILITY OF RNN


RNN offers a lot of flexibility



TRAINING

Training

- Backpropagation through time (BPTT)
 - Unfold and apply SGD

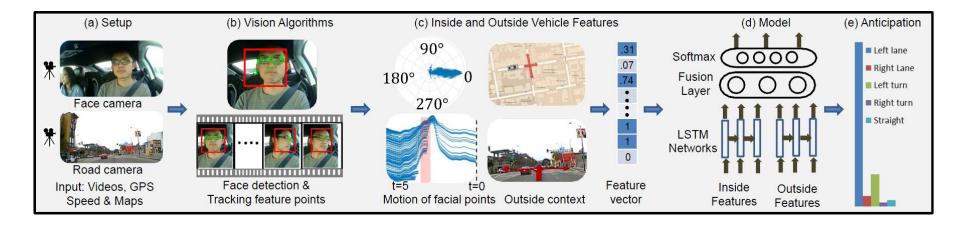
间人

Human Activity Recognition

예제코드

- <u>LSTM</u> <u>Seq2Seq</u>

APPLICATIONS


CAR THAT KNOWS BEFORE YOU DO VIA SENSORY-FUSION DEEP LEARNING ARCHITECTURE

ICCV 2015, Cornell Univ., Stanford Univ., Brain Of Things Inc

						Tasks					
						ADAS					
						Self Driving					
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory	
	Traditional	Non-	Non-machine Learning		GPS, SLAM		Optimal control				
		Ν		SVM MLP		Pedestrian detection (HOG+SVM)					
Me	De	Iachine-Le:	Supervised	CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning				
Methods	Deep-Learning 1	Machine-Learning based method	/ised	RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning	Behavior Prediction/ Driver identificati on		*	
	based	nethc		DNN					*	*	
		b	Re	einforcement			*				
			U	nsupervised						*	

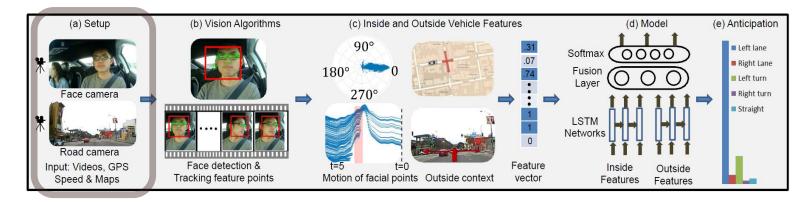
Overview

- An approach for anticipating driving maneuvers, several seconds in advance: lane change, keeping straight, turn, ...
- Generic sensory-fusion RNN-LSTM architecture for anticipation in robotics applications

Demo Video

Car That Knows Before You Do

Ashesh Jain, Hema S Koppula, Bharad Raghavan, Shane Soh, Avi Singh and Ashutosh Saxena



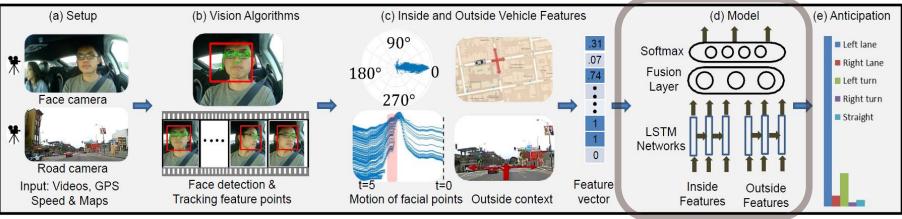
Department of Computer Science Cornell University & Stanford University


https://youtu.be/O5I1hBwkwJc

Setup

- Driver-facing camera inside the vehicle
- Camera facing the road
- Speed logger of the car
- Global Positioning System (GPS)

Features


- 1. Face detection and tracking:
 - Driver's face: Viola Jones face detector
 - Point extract: Shi-Tomasi corner detector
 - Facial points tracker: KLT(Kanade-Lucas-Tomasi)
- 2. Head motion features ($\phi_{face} \in \mathbb{R}^9$):
 - histogram features are used
 - matches facial points and

create histograms of corresponding horizontal motions

- 3. 3D head pose and facial landmark features ($\phi_{face} \in \mathbb{R}^{12}$): CLNF tracker model
- Aggregate ϕ_{face} for every 20 frames

Network Architecture – at a

glance

LSTM units is used for training

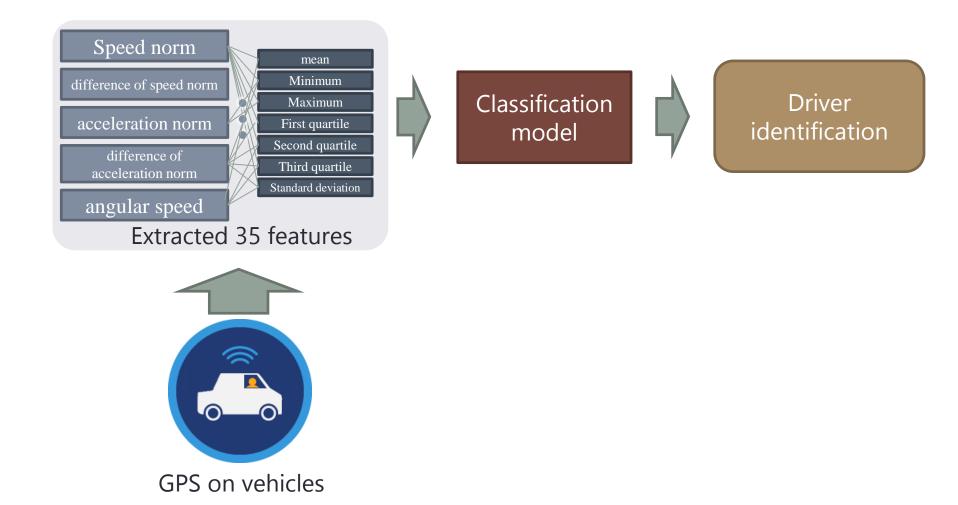
- - consider accumulated information from the past:
 - noted as event { $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T), \mathbf{y}$ } $\begin{pmatrix} \mathbf{x}_t: observation \ at \ time \ t \\ \mathbf{y}: representation \ of \ the \ event \end{pmatrix}$
 - y_t is updated as $y_t = \text{softmax}(W_y h_t + b_y)$, with the representation $h_t = f(Wx_t + Hh_{t-1} + b)$

Data set

- Fully natural driving
- 1180 miles of natural freeway, city driving
- Collected across two states
- Ten drivers, different kinds of driving maneuvers
- 2 months to take
- About 17GB
- 700 events of annotation
 - 274 lane change
 - 131 turns
 - 295 straight

Result

- With sensory fusion:
 - Precision of 84.5%
 - Recall of 77.1%
 - Anticipates maneuvers 3.5 seconds on average
- With incorporating the driver's 3D head-pose:
 - Precision of 90.5%
 - Recall of 87.4%
 - Anticipates maneuvers 3.16 seconds on average


Method	Pr (%)	<i>Re</i> (%)	Time-to-	
			maneuver (s)	
F-RNN-EL	84.5 ± 1.0	77.1 ± 1.3	3.58	
F-RNN-EL w/ 3D head-pose	90.5 ± 1.0	87.4 ± 0.5	3.16	

CHARACTERIZING DRIVING STYLES WITH DEEP LEARNING

W. Dong et al.ArXiv 2016IBM Research China, Nanjing Univ., Univ. of Waterloo

						Tasks					
						ADAS					
						Self Driving					
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory	
	Traditional	Non-	Non-machine Learning		GPS, SLAM		Optimal control				
		Ν		SVM MLP		Pedestrian detection (HOG+SVM)					
Me	De	Iachine-Le:	Supervised	CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning				
Methods	Deep-Learning 1	Machine-Learning based method	/ised	RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning	Behavior Prediction/ Driver identificati on		*	
	based	nethc		DNN					*	*	
		b	Re	einforcement			*				
			U	nsupervised						*	

Overview

Data

• 목표: GPS데이터를 이용하여 사용자 ID 분류 수행

• Input sensor

- GPS trajectory as a sequence (x, y, t)
- Dataset and feature map
 - Training/Test data
 - Data from 50/1,000 drivers (original data: Kaggle 2015 competition on Driver Telematics Analysis)
 - Data transformation
 - Feature map (35=5 x 7)
 - Basic features (5)
 :Speed norm; difference of speed norm; acceleration norm; difference of acceleration norm; angular speed
 - Statistical features (7)
 : mean; min; max; ¹/₄; ¹/₂; ³/₄; standard deviation of each basic feature

Machine Learning

- Machine Learning Models
 - CNN
 - Six layers model (3 conv. + 3 FC)
 - RNN
 - RNN model
 - Gradient boosting decision tree (GBDT)
 - For reference

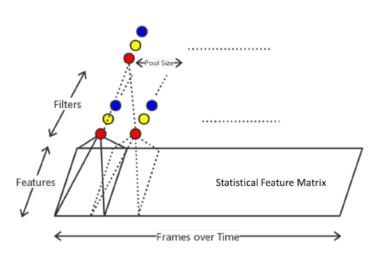


Figure 3: 1-D convolution and pooling in CNN

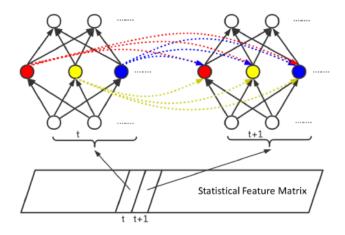


Figure 4: RNN training on the input statistical feature matrix

Experimental Results

• Experiments

- 80% for training, 20% for testing
- Small scale test for 50 drivers data
 - Include 35,000 segments from 8,000 trips
- large scale test for 1,000 drivers data

Table 1	1: Results	on 50 drive	ers' data	Table 2: Results on 1000 drivers' data			
Method	Seg~(%)	Trip $(\%)$	Trip Top-5 (%)	Method	$\operatorname{Seg}(\%)$	Trip $(\%)$	Trip Top-5 (%)
NoPoolCNN	16.9	28.3	56.7	CNN	23.4	26.7	46.7
CNN	21.6	34.9	63.7	StackedIRNN	27.5	40.5	60.4
PretrainIRNN	28.2	44.6	70.4	TripGBDT	-	9.2	15.8
IRNN	34.7	49.7	76.9				
$\operatorname{StackedIRNN}$	34.8	52.3	77.4				
GBDT	18.3	29.1	55.9				
$\operatorname{TripGBDT}$	-	51.2	74.3				

DETECTING ROAD SURFACE WETNESS

							Ta	sks		
						ADAS				
						Self Driving				
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory
	Traditional	Non-	Non-machine Learning		GPS, SLAM		Optimal control			
		1		SVM MLP		Pedestrian detection (HOG+SVM)				
Met	De	Iachine-Lea	Supervised	CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning			
Methods	Deep-Learning l	Machine-Learning based method		RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning	Behavior Prediction/ Driver identificati on		*
	based	netho		DNN					*	*
		þ	Re	einforcement			*			
			U	nsupervised						*

Dataset/Machine Learning

- Shotgun microphone behind the rear tire
- Spectogram + LSTM

• 관련 기사

• <u>http://www.ibtimes.co.uk/heres-how-self-driving-cars-can-detect-dangerous-roads-using-sound-ai-1532407</u>

Detecting Road Surface wetness

Detecting Road Surface Wetness from Audio: A Deep Learning Approach

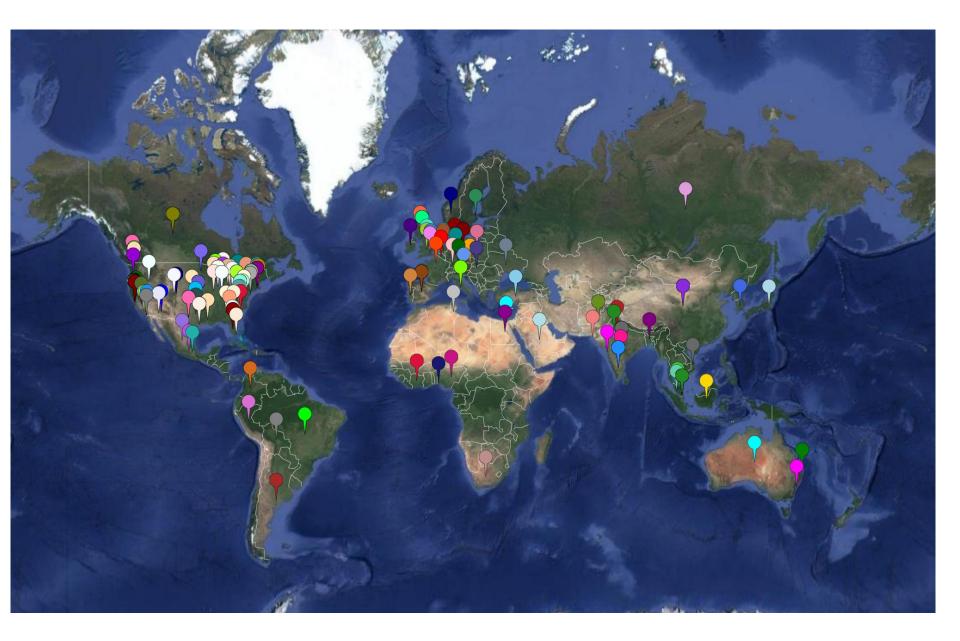
Irman Abdić^{1,2} Lex Fridman¹ Erik Marchi² Daniel E. Brown¹ William Angell¹ Bryan Reimer¹ Björn Schuller^{2,3}

> Massachusetts Institute of Technology (MIT) ²Technische Universität München (TUM) ³Imperial College London

> > AGELAB

END-TO-END DRIVING WITH RNNS

					Tasks					
							ADAS			
						Self Driving				
					Localizati on	Perception	Planning/ Control	Driver state	Vehicle Diagnosis	Smart factory
Trac Non-			mach	ine Learning	GPS, SLAM		Optimal control			
	Traditional			SVM MLP		Pedestrian detection (HOG+SVM)				
Me	De	Machine-Learning	Supervised	CNN		Detection/ Segmentat ion/Classif ication	End-to- end Learning			
Methods	Deep-Learning b	arning based method	rised	RNN (LSTM)		Dry/wet road classificati on	End-to- end Learning	Behavior Prediction/ Driver identificati on		*
	based	nethc		DNN					*	*
		d	Re	einforcement			*			
			U	nsupervised						*

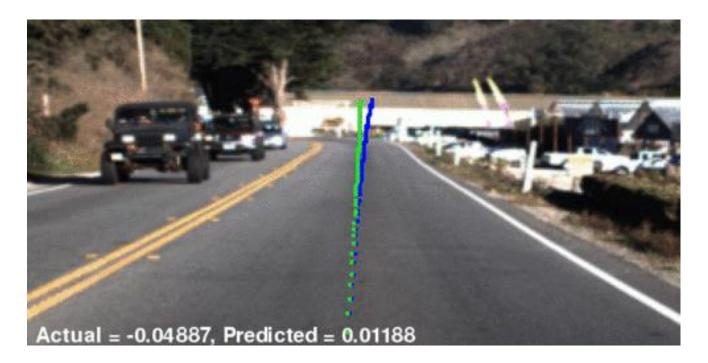

End-to-end Driving with RNNs

- 1st and 3rd place winner of the Udacity end-to-end steering competition used RNNs:
 - Sequence-to-sequence mapping from images to steering angles

• 관련 링크

- <u>https://medium.com/udacity/challenge-2-using-deep-learning-to-predict-steering-angles-f42004a36ff3</u>
- <u>https://medium.com/udacity/teaching-a-machine-to-steer-a-car-d73217f2492c</u>

UDACITY Self-Driving Car Engineer Nanodegree


1st Place Winner

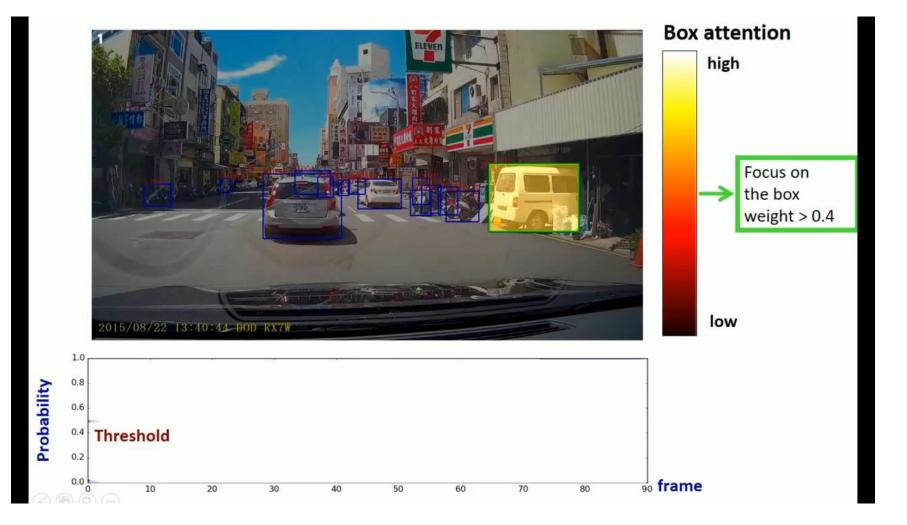
- LSTM inputs: 3D convolution of image sequence
- Outputs: predicted steering angle, speed, torque
- Sequence length = 10

3rd Place Winner

- LSTM inputs: 3000 features extracted with CNN
- Outputs: predicted steering angle
- Sequence length = 10

ANTICIPATING ACCIDENTS IN DASHCAM VIDEOS

Dataset


	Positive examples	Negative examples	Total
Training set	455	829	1284
Testing set	165	301	466
Total	620	1130	1730

Positive example

Negative example

