Overview of gradient descent
optimization algorithms

HYUNG IL KOO
Based on
http://sebastianruder.com/optimizing-gradient-descent/

Problem Statement

- Machine Learning = Optimization Problem
- Training samples: {(x®,y®)}
- Cost function: J(8; X;Y) =); d(f(xW;0),yV)

0 =argm6in](9;X;Y)

Optimization method

- Gradient Descent

- The most common way to optimize neural networks

- Deep learning library contains implementations of various gradient descent
algorithms
- To minimize an objective function J(6) parameterized by a model's
parameters 8 € R by updating the parameters in the opposite direction of

the gradient of the objective function Vy/(6) with respect to the
parameters.

Loss .

CONTENTS

- Gradient descent variants
- Batch gradient descent
- Stochastic gradient descent
- Mini-batch gradient descent

- Challenges

- Gradient descent optimization algorithms
- Momentum
- Adaptive Gradient

- Visualization
- Which optimizer to choose?

- Additional strategies for optimizing SGD
- Shuffling and Curriculum Learning
- Batch normalization

GRADIENT DESCENT
VARIANTS

Batch gradient descent

- Computes the gradient of the cost function w.r.t. 8 for the
entire training dataset:

oneV = 9o —nVeJ(6;X;Y)

- Properties
- Very slow
- Intractable for datasets that don't fit in memory
- No online learning

L
Stochastic Gradient descent (SGD)

» To perform a parameter update for each training example x(®
and label y®

gnew = gold _ piz.1(0; x (O y)

- Properties:
- Faster
- Online learning
- Heavy fluctuation
- Capability to jump to new (potentially better local minima)
- Complicated convergence (overshooting)

D
SGD fluctuation

10 I I I I I I
0 200 1000 1500 2000 2500 3000 3500

D
Batch Gradient vs SGD

Batch gradient Stochastic gradient descent

- It converges to the minimum - It Is able to jJump to new and
of the basin the parameters potentially better local
are placed in. minima.

- This complicates
convergence to the exact
minimum, as SGD will keep
overshooting

for 1 in range(nb_epochs):
np.random.shuffle(data)
for example in data:
params_grad = evaluate_gradient(loss_function, example, params)

for i in range(nb_epochs):
params_grad = evaluate gradient(loss function, data, params)

params = params - learning_rate * params_grad

params = params - learning_rate * params_grad

Mini-batch (stochastic) gradient descent

- To perform an update for every mini-batch of n training
examples:

gnew — gold _ 7779](9; x(i:i+n); y(i:i+n))

for i in range(nb_epochs):
np.random. shuffle(data)
for batch in get batches(data, batch size=5@):
params_grad = evaluate gradient(loss_function, batch, params)

params = params - learning_ rate * params_grad

Properties of mini-batch gradient descent

- Compared with SGD
- It reduces the variance of the parameter updates, which can lead to more

stable convergence;
- It can make use of highly optimized matrix optimizations common to
state-of-the-art deep learning libraries that make computing the gradient

w.r.t. a mini-batch very efficient

- Mini-batch gradient descent is typically the algorithm of
choice when training a neural network and the term SGD

usually is employed also when mini-batches are used.

CHALLENGES

Challenges

- Choosing a proper learning rate can be difficult.
- Small learning rate leads to painfully slow convergence

- Large learning rate can hinder convergence and cause the loss function to
fluctuate around the minimum or even to diverge

- Learning rate schedules and thresholds

- It has to be defined in advance and unable to adapt to a dataset's
characteristics.

- Same learning rate applies to all parameter updates.

- If our data is sparse and our features have very different frequencies, we
might not want to update all of them to the same extent, but perform a
larger update for rarely occurring features.

Challenges

- Avoiding getting trapped in their numerous suboptimal local

minima and saddle points
- Dauphin et al. argue that the difficulty arises in fact not from local
minima but from saddle points.

- These saddle points are usually surrounded by a plateau of the same error,
which makes it notoriously hard for SGD to escape, as the gradient is

close to zero in all dimensions.

MOMENTUM

Momentum

- One of the main limitations of gradient descent) is local minima

- When the gradient descent algorithm reaches a local minimum, the gradient becomes
zero and the weights converge to a sub-optimal solution

A very popular method to avoid local minima is to compute a temporal average
direction in which the weights have been moving recently

- An easy way to implement this is by using an exponential average
Ve = YV_1 +nVpJ(6)
gnew — gold _ v,

- The term y is called the momentum
- The momentum has a value between 0 and 1 (typically 0.9)

- Properties
- Fast convergence
- Less oscillation

Momentum

- Essentially, when using momentum, we push a ball down a hill. The ball
accumulates momentum as it rolls downhill, becoming faster and faster on
the way (until it reaches its terminal velocity if there is air resistance).

- The same thing happens to our parameter updates: The momentum term
Increases for dimensions whose gradients point in the same directions and
reduces updates for dimensions whose gradients change directions. As a
result, we gain faster convergence and reduced oscillation.

SGD without momentum ' SGD with momentum

Momentum

- The momentum term is also useful in spaces with long
ravines characterized by sharp curvature across the ravine
and a gently sloping floor

- Sharp curvature tends to cause divergent oscillations across
the ravine

- To avoid this problem, we could decrease the learning rate, but this is too slow

- The momentum term filters out the high curvature and allows the effective weight
steps to be bigger

- It turns out that ravines are not uncommon in optimization problems, so the use of
momentum can be helpful in many situations

- However, a momentum term can hurt when the search is close to the minima
(think of the error surface as a bowl)
- As the network approaches the bottom of the error surface, it builds enough

momentum to propel the weights in the opposite direction, creating an
undesirable oscillation that results in slower convergence

?

Smarter Ball

NGD (Nesterov accelerated gradient)

- Nesterov accelerated gradient improved on the basis of Momentum algorithm
- Approximation of the next position of the parameters.

Ve = YViq + V) (0 — yVi_q).
gnew — eold — v,

ADAPTIVE GRADIENTS

L
Adaptive Gradient Methods

- Let us adapt the learning rate of each parameter, performing
larger updates for infrequent and smaller updates for frequent
parameters.

- Methods
- AdaGrad (Adaptive Gradient Method)
- AdaDelta
- RMSProp (Root Mean Square Propagation)
- Adam (Adaptive Moment Estimation)

L
Adaptive Gradient Methods

- These methods use a different learning rate for each parameter
0; € ‘R at every time step t.

- For brevity, we set gi(t) to be the gradient of the objective function w.r.t.

0; € R at time step t:

(t+1) _ (0 ®)
0; =6;"—n-g;

- These methods modify the learning rate i at each time step (t) for every
parameter 8; based on the past gradients that have been computed for 6;.

L
Adagrad

- Adagrad modifies the general learning rate n at each time step t
for every parameter 8; based on the past gradients that have
been computed for 6;:

Hi(t+1) _ Hi(t) B n

\/Gt,i ~+ Egt’i

2
*Gri = X<t (gi(k))
(k) _ a/(0)

Adagrad

* Pros
- It eliminates the need to manually tune the learning rate. Most
Implementations use a default value of 0.01.

- Cons
- Its accumulation of the squared gradients in the denominator: the
accumulated sum keeps growing during training. This causes the learning
rate to shrink and eventually become infinitesimally small. The following

algorithms aim to resolve this flaw.

L
RMSprop

- RMSprop has been developed to resolve Adagrad's diminishing
learning rates.

2
Ai =V Ao+ (1 —7y) (gi(t))

ei(t+1) _ ei(t) B n
\/At,i + €

9t,i

n : Learning rate is suggest to set to 0.001
y : Fixed momentum term

Adam (Adaptive moment Estimation)

- Adam keeps an exponentially decaying average of past gradients m,, similar to
momentum.

me; = f1me_q; + (1 — .31)gi(t)

m, : Estimate of the first moment(the mean)
v, : Estimate of the second moment
(the un-centered variance)

2
. (t) B, : suggest to set to 0.9
Ui = IBZUt—l,i + (1 _ :BZ) (gl [, : suggest to set to 0.999

- They counteract these biases by computing bias-corrected first and second
moment estimates.
me ~ Ut,i

Vei =
1-p5,

Mg =
1—-p

- which yields the Adam update rule.

(t+1) _ () n . | Y
Hl' = Hl' — My € 1 suggest to set to 10

COMPARISON

Visualization of algorithms

e W e

SGD .
Momentum
NAG g
— Adagrad |
Adadelta
Rmsprop 4
2
0
-2

p 88, 'i %
r 0,
s
00
9
9% 5
"o":'*’o:::"' KA
19,20.0:.%.9;
SR G

- SGD

= Momentum
- NAG

— Adagrad
~—— Adadelta
— Rmsprop
R X7
:',:?, II‘?;;:?"
3 %‘;’"

1.0

L
Which optimizer to choose?

- RMSprop Is an extension of Adagrad that deals with its
radically diminishing learning rates.

- Adam slightly outperform RMSprop towards the end of
optimization as gradients become sparser.

CONCLUSION

Conclusion

- Three variants of gradient descent, among which mini-batch
gradient descent is the most popular.

