
CNN 응용

Tasks

ADAS

Self Driving

Localizati

on
Perception

Planning/

Control

Driver

state

Vehicle

Diagnosis

Smart

factory

M
eth

o
d

s

T
rad

itio
n

al

Non-machine Learning
GPS,

SLAM

Optimal

control

M
ach

in
e-L

earn
in

g
b

ased
 m

eth
o

d

S
u

p
erv

ised

SVM

MLP

Pedestrian

detection
(HOG+SVM)

D
eep

-L
earn

in
g

 b
ased

CNN

Detection/

Segmentat

ion/Classif

ication

End-to-

end

Learning

RNN

(LSTM)

Dry/wet

road

classificati

on

End-to-

end

Learning

Behavior

Prediction/

Driver

identificati

on

*

DNN * *

Reinforcement *

Unsupervised *

Classification/Detection/Segmentation

Image

Classification

Object

Detection

Semantic

Segmentation

Detection/Segmentation

OBJECT DETECTION

Computer Vision Tasks

Detection as (classification+regression)?

Detection as (classification+regression)?

• Need variable sized outputs

Detection as classification

• Detection as classification (e.g., sliding windows)

• Problem: Need to test many positions and scales

• Solution: If your classifier is fast enough, just do it!

• t

• Detection with a CNN classifier

• Problem: Need to test many positions and scales, and use a

computationally demanding classifier

• Solution: Only look at a tiny subset of possible positions

Region Proposals

R-CNN

(REGIONS WITH CNN FEATURES)

R-CNN

R-CNN

R-CNN

R-CNN

R-CNN

R-CNN

Limitations of R-CNN

• Ad hoc training objectives

• Fine tune network with softmax classifier (log loss)

• Train post-hoc linear SVMs (hinge loss)

• Train post-hoc bounding box regressions (least squares)

• Training is slow (84h), takes a lot of disk space

• Inference (detection) is slow

• 47s / image with VGG16

FAST R-CNN

Fast R-CNN (test time)

Fast R-CNN (training time)

Comparison

Fast R-CNN R-CNN

Train time (h) 9.5 84

Speedup 8.8x 1x

Test time/image 0.32s 47.0s

Test speedup 146x 1x

mAP 66.9 66.0

Timings exclude object proposal time, which is equal for all methods. All methods

use VGG16 from Simonyan and Zisserman.

Fast R-CNN

• Pros

• End-to-end training of deep ConvNets for detection

• Fast training times

• Cons

• Out-of-network region proposals

• Selective search: 2s/image

• Solution

• Test-time speeds don’t include region proposals

• Just make the CNN do region proposals too!

FASTER R-CNN

Faster RCNN

• Insert a Region Proposal Network (RPN) after the last convolutional layer

• RPN trained to produce region proposals directly

• no need for external region proposals!

• After RPN, use RoI Pooling and an upstream classifier and bbox regressor

just like Fast R-CNN

Faster R-CNN: RPN

• Slide a small window on the

feature map

• Build a small network for:

• classifying object or not-object, and

• regressing bbox locations

• Position of the sliding window

provides localization

information with reference to

the image

• Box regression provides finer

localization information with

reference to this sliding window

Faster R-CNN

• Use k (=9) anchor boxes at

each location

• Anchors are translation

invariant: use the same ones at

every location

• Regression gives offsets from

anchor boxes

• Classification gives the

probability that each (regressed)

anchor shows an object

Results

R-CNN Fast R-CNN Faster R-CNN

Test time per

image

(with proposals)

50 seconds 2 seconds 0.2 seconds

Speedup 1x 25x 250x

mAP (VOC 2007) 66.0 66.9 66.9

ImageNet Detection 2013 - 2015

Object detection in the wild by Faster R-CNN + ResNet

Code links

• R-CNN

• Caffe + Matlab (https://github.com/rbgirshick/rcnn)

• Faster R-CNN

• Caffe + Matlab (https://github.com/rbgirshick/fast-rcnn)

• Faster R-CNN

• Caffe + Matlab (https://github.com/ShaoqingRen/faster_rcnn)

• Caffe + Python (https://github.com/rbgirshick/py-faster-rcnn)

• YOLO

• http://pjreddie.com/darknet/yolo/

https://github.com/rbgirshick/rcnn
https://github.com/rbgirshick/fast-rcnn
https://github.com/ShaoqingRen/faster_rcnn
https://github.com/rbgirshick/py-faster-rcnn
http://pjreddie.com/darknet/yolo/

YOLO:

YOU ONLY LOOK ONCE

YOLO algorithm

 Input & Output

- Input : 448×448×3 resized image

- Output : 7×7×30 tensor (S×S× (B×P + C))

S

S

Bounding box (B) : 2

Predictions of bounding box (P) : 5

(𝑥, 𝑦, ℎ, 𝑤 , confidence)

Class probabilities (C) : 20

YOLO algorithm

• Divide image into S x S grid

• Within each grid cell predict:

• B Boxes: 4 coordinates + confidence

• Class scores: C numbers

• Regression from image to 7 × 7 × (5 × 𝐵 + 𝐶) tensor

YOLO algorithm

• Network architecture

- Similar to GoogLeNet model

- 1 × 1 reduction layers instead of Inception layer

- Use leaky rectified linear activation function

YOLO algorithm

• Loss function

𝐸 𝜃 = 𝜆𝑐𝑜𝑜𝑟𝑑 𝑖=0
𝑆2 𝑗=0

𝐵 𝟏𝑖,𝑗
𝑜𝑏𝑗

𝑥𝑖 − 𝑥𝑖
2 + 𝑦𝑖 − 𝑦𝑖

2 + 𝜆𝑐𝑜𝑜𝑟𝑑 𝑖=0
𝑆2 𝑗=0

𝐵 𝟏𝑖,𝑗
𝑜𝑏𝑗

𝑤𝑖 − 𝑤𝑖

2
+ ℎ𝑖 − ℎ𝑖

2

+ 𝑖=0
𝑆2 𝑗=0

𝐵 𝟏𝑖,𝑗
𝑜𝑏𝑗

𝐶𝑖 − 𝐶𝑖
2

+ 𝜆𝑛𝑜𝑜𝑏𝑗 𝑖=0
𝑆2 𝑗=0

𝐵 𝟏𝑖,𝑗
𝑛𝑜𝑜𝑏𝑗

𝐶𝑖 − 𝐶𝑖
2
+ 𝑖=0

𝑆2 𝟏𝑖,𝑗
𝑜𝑏𝑗 𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝐵 𝑝𝑖(𝑐) − 𝑝𝑖(𝑐)
2

YOLO algorithm

• Thresholding

th = 0.2 th = 0

YOLO: You Only Look Once

• Faster than Faster R-CNN, but not as good

Demo Videos

OBJECT

SEGMENTATION

Computer Vision Tasks

Semantic segmentation

• Label every pixel

• Don’t differentiate instances

FULLY CONNECTED LAYERS AS

CONVOLUTION LAYERS

FC layer as Conv layer

• Image classification

• Semantic segmentation

• Given an input image, obtain pixel-wise segmentation mask using a deep Convolutional Neural

Network (CNN)

Query image
convolution

Fully

connected

Output vector (1x1x21)

Query image

Output map(16x16x21)
convolution

1

0.

5
0

FC layer as Conv layer

• Transforming fully connected layers into convolution layers

enables a classification net to output a heatmap

Encoder/Decoder

Microsoft Deep Learning Semantic Image

Segmentation

코드예시

• U-net

%5bex%5dSemanticSegmentation/%5bworking%5d+u-net.html

MORE APPLICATIONS

BEHAVIOR REFLEX

APPROACH

Tasks

ADAS

Self Driving

Localizati

on
Perception

Planning/

Control

Driver

state

Vehicle

Diagnosis

Smart

factory

M
eth

o
d

s

T
rad

itio
n

al

Non-machine Learning
GPS,

SLAM

Optimal

control

M
ach

in
e-L

earn
in

g
b

ased
 m

eth
o

d

S
u

p
erv

ised

SVM

MLP

Pedestrian

detection
(HOG+SVM)

D
eep

-L
earn

in
g

 b
ased

CNN
3D object

Detection

End-to-

end

Learning

RNN

(LSTM)

Dry/wet

road

classificati

on

End-to-

end

Learning

Behavior

Prediction/

Driver

identificati

on

*

DNN * *

Reinforcement *

Unsupervised *

DAVE-1

DAVE-1

• Development period : 2003-2004

• CNN structure is different with today’s usual CNN structure

• Input : two camera (YUV channel)

• 320 x 240 input image are resized to 149 x 58 using LPF

• Learning handle angle from remote control

• Learning 4 days using Intel Xeon 3.0GHz CPU

• Reference

• Muller, Urs, et al. "Off-road obstacle avoidance through end-to-end
learning."Advances in neural information processing systems. 2005.

DAVE robot

Overview

2 Camera(YUV)

6-Layer CNN

2 outputs

(Turn Left, Turn

Right)

Result

Input images and CNN Layer results Actual driving result

END TO END LEARNING FOR SELF-

DRIVING CARS

2016 Apr, arXiv, NVIDIA New Jersey

DRIVE PX

• The Project DAVE 2

• NVIDIA started the Project @2015

• Single Camera input

• Steering command output through a trained CNN model

• The driving system avoid:

- the need to recognize human-designated features

like lane markings, guard rails..

- having a collection of “if, then, else” rules

Main Idea

Primary Motivation

DAVE-1(2004) vs DAVE-2(2016)

• The small car → The real car

• Advance performance of training (GPGPU)

• Advanced CNN model

• Newly collected training data

In order to minimize the MSE

(between steering command output

& human driver)

• YUV input

• The first layer:

hard-coded normalization

• Convolutional layers:

• TensorFlow codes

Network Architecture

Normalization

Fully connected

Convolutional layers

end2end_driving.html

NVIDIA autonomous car driving video

https://youtu.be/qhUvQiKec2U

• On road test:
For 10 miles driving, autonomous 98% of the time.

https://youtu.be/qhUvQiKec2U

Trivia, Yann LeCun’s post on fb

• Mr. LeCun participated in

DAVE-1 project, 2004(below)

https://www.facebook.com/yann.lecun/posts/10153527223032143

https://www.facebook.com/yann.lecun/posts/10153527223032143

DIRECT PERCEPTION

APPROACH
C. Chen et al. ICCV 2015

Tasks

ADAS

Self Driving

Localizati

on
Perception

Planning/

Control

Driver

state

Vehicle

Diagnosis

Smart

factory

M
eth

o
d

s

T
rad

itio
n

al

Non-machine Learning
GPS,

SLAM

Optimal

control

M
ach

in
e-L

earn
in

g
b

ased
 m

eth
o

d

S
u

p
erv

ised

SVM

MLP

Pedestrian

detection
(HOG+SVM)

D
eep

-L
earn

in
g

 b
ased

CNN
Affordance

estimation

End-to-

end

Learning

RNN

(LSTM)

Dry/wet

road

classificati

on

End-to-

end

Learning

Behavior

Prediction/

Driver

identificati

on

*

DNN * *

Reinforcement *

Unsupervised *

DeepDriving

• Direct perception

• Estimate the affordance for driving instead of visually parsing the entire
scene or blindly mapping an image to controls

• Mapping an input image to a small number of key perception indicators
that directly related to the affordance of a road/traffic state

• Approach

• Built upon deep convolution neural network

• Trained and tested on TORCS (The Open Racing Car Simulator)

• Automatically learn image features for estimating affordance related to
autonomous driving

• Much simpler structure than the typical mediated perception
approach

• More interpretable than the typical behavior reflex approach

Affordance

Affordance indicators

Affordance estimation - CNN Model Learning

• AlexNet

• Supervised Learning (484,815 Training images)

Angle

toMarking_ML

toMarking_M

…

13 Affordances

Training Dataset

• TORCS(The Open Racing Car Simulator)

• Collect indicators (human control data)

• Speed of host car

• Position of host car

• Distance to the preceding car

Tracks (7 Tracks) Cars (22 kinds)

B. Wymann, E. Espie, C. Guionneau, C. Dimitrakakis, ´ R. Coulom, and A. Sumner. TORCS, The Open Racing Car Simulator. http://www.torcs.org, 2014

Visualization of Learned models

Result

BAKCUPS

KITTI DATASET

Are we ready for Autonomous Driving?

The KITTI Vision Benchmark Suite (CVPR, 2012)

Sturm, Jürgen, et al. "A benchmark for the evaluation of RGB-D SLAM systems." 2012 IEEE/RSJ ICIRS2012.

An Empirical Evaluation of Deep Learning on Highway Driving

Huval, Brody, et al. "An empirical evaluation of deep learning on highway driving." arXiv preprint arXiv:1504.01716 (2015).

KITTI Benchmark suite – Sensor Setup

• 다양한 센서가 탑재된 자동차로 실제 주행을 통해 데이터 수집

• 1 Navigation System(GPS/IMU) : OXTS RT 3003

• 1 Laser scanner : Velodyne HDL-64E

• 2 Grayscale cameras : Point Grey Flea 2 (FL2-14S3M-C)

• 2 Color cameras : Point Grey Flea 2 (FL2-14S3C-C)

• 4 Varifocal lenses : Edmund Optics NT59-917

실제데이터수집을위한차량및센서설계도 실제차량사진

KITTI Benchmark suite – Ground truth(1/3)

Stereo & Optical Flow

KITTI Benchmark suite – Ground truth(2/3)

Odometry

KITTI Benchmark suite – Ground truth(3/3)

Object Detection & Tracking

KITTI Benchmark suite

• 다양한 비전 기술에 대한 Ground truth가 존재
• Stereo [1],[4]

• Optical Flow [1],[4]

• Odometry [1]

• Object detection [1]

• Tracking [1]

• Road/Lane detection [1]

• Raw data 제공[3]

• Reference
• [1] Geiger, Andreas, Philip Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? the kitti

vision benchmark suite." Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.
IEEE, 2012.

• [2] Geiger, Andreas, et al. "Vision meets robotics: The KITTI dataset." The International Journal of
Robotics Research (2013): 0278364913491297.

• [3] Fritsch, Jannik, Tobias Kuehnl, and Andreas Geiger. "A new performance measure and evaluation
benchmark for road detection algorithms." 16th International IEEE Conference on Intelligent
Transportation Systems (ITSC 2013). IEEE, 2013.

• [4] Menze, Moritz, and Andreas Geiger. "Object scene flow for autonomous vehicles." Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

KITTI Benchmark suite

