CNN S&
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Classification/Detection/Segmentation

Image Object Semantic
Classification Detection Segmentation

container shi
container ship
lifeboat
amphibian
fireboat
drilling platform







OBJECT DETECTION




Computer Vision Tasks

Classification Instance

Classification Localization Object Detection Segmentation

CAT, DOG, DUCK | CAT, DOG, DUCK
- PN 7

Y Y
Single object Multiple objects

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Detection as (classification+regression)?

DOG, (x,y, w, h)
CAT, (x,y,w, h)
CAT, (x,y,w, h)
DUCK (x, y, w, h)

= 16 numbers

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Detection as (classification+regression)?

- Need variable sized outputs

CAT, (x,y,w, h)
CAT, (x,y, w, h)

CAT (x, y, W, h)

= many numbers

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Detection as classification

- Detection as classification (e.g., sliding windows)
- Problem: Need to test many positions and scales
- Solution: If your classifier is fast enough, just do it!

\ CAT? NO ' \ CAT? YES!
DOG? NO | DOG? NO

- Detection with a CNN classifier

- Problem: Need to test many positions and scales, and use a
computationally demanding classifier

- Solution: Only look at a tiny subset of possible positions

CAT? NO

DOG? NO

° L

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Region Proposals

Bottom-up segmentation, merging regions at multiple scales

Convert
regions
to boxes

Fei-Fei Li & Andrej Karpathy & Justin Johnson



R-CNN
(REGIONS WITH CNN FEATURES)




=

Slide credit: Ross Girschick



Regions of Interest (Rol)
from a proposal method

(~2k)

Slide credit: Ross Girschick



y 4 Warped image regions

Regions of Interest (Rol)
from a proposal method

(~2k)

Slide credit: Ross Girschick



R-CNN

8 ara ea 2gI10

ConvNet 2R z

ConvNet
ConvNet
arpec age regio
: ' = Regions or Interest (RO
= - = O d DIrOopoOSsd - 00
4§ ==

Slide credit: Ross Girschick



R-CNN

d eglio
8 ara ea 2gI10
ConvNet 2R z
ConvNet
ConvNet
arpec age regio
: ' = Regions or Interest (RO
= - = O d DIrOopoOSsd - 00
4§ ==
2 — N d0e

Slide credit: Ross Girschick



R-CNN

ConvNet

ConvNet

ConvNet

<

Apply bounding-box regressa

=
d 210
A ™
orward ea g|0
oug o S
2
arpec age reglo
L)
) »
egIoNs O ere 0
OM a Proposa ethod

Slide credit: Ross Girschick



D
Limitations of R-CNN

- Ad hoc training objectives
- Fine tune network with softmax classifier (log loss)
- Train post-hoc linear SVMs (hinge loss)
- Train post-hoc bounding box regressions (least squares)

- Training is slow (84h), takes a lot of disk space

- Inference (detection) is slow
- 47s [ image with VGG16

Slide credit: Ross Girschick



FAST R-CNN




Fast R-CNN (test time)

Fully-connected layers

Regions of
Interest (Rols)
from a proposal

method Forward whole image through ConvNet

—
ConvNet '

Slide credit: Ross Girschick



Fast R-CNN (training time)
==k

Slide credit: Ross Girschick



Comparison

Train time (h) 9.5 84
Speedup 8.8x 1x
Test time/image 0.32s 47.0s
Test speedup 146x 1x
mAP 66.9 66.0

Timings exclude object proposal time, which is equal for all methods. All methods
use VGG16 from Simonyan and Zisserman.

Slide credit: Ross Girschick



D
Fast R-CNN

- Pros
- End-to-end training of deep ConvNets for detection
- Fast training times

- Cons

- Out-of-network region proposals
- Selective search: 2s/image

- Solution
- Test-time speeds don’t include region proposals
- Just make the CNN do region proposals too!

Slide credit: Ross Girschick



FASTER R-CNN




D
Faster RCNN

- Insert a Region Proposal Network (RPN) after the last convolutional layer

- RPN trained to produce region proposals directly
- no need for external region proposals!

- After RPN, use Rol Pooling and an upstream classifier and bbox regressor

just like Fast R-CNN
classifier
i
proposals .
e

Region Proposal Network

Fei-Fei Li & Andrej Karpathy & Justin Johnson



D
Faster R-CNN: RPN

- Slide a small window on the
feature map

- Build a small network for: itk W IR
- classifying object or not-object, and [ sworesi | | driae
- regressing bbox locations \ ’

- Position of the sliding window |
provides localization ' '
Information with reference to | \‘Q : \
the image slidkag window \

- Box regression provides finer SR A AT

localization information with
reference to this sliding window

Fei-Fei Li & Andrej Karpathy & Justin Johnson



D
Faster R-CNN

- Use k (=9) anchor boxes at
eaCh |Ocati0n | 2k scores | | 4k coordinates | <@mm  Fanchor boxes

- Anchors are translation B | f B
invariant: use the same ones at T
every location t

- Regression gives offsets from
anchor boxes S o

- Classification gives the
probability that each (regressed)
anchor shows an object

Fei-Fei Li & Andrej Karpathy & Justin Johnson



| RCNN Fast R-CNN Faster R-CNN
Test time per 50 seconds 2 seconds 0.2 seconds
image
(with proposals)
Speedup 1x 25X 250X
mAP (VOC 2007) 66.0 66.9 66.9

Fei-Fei Li & Andrej Karpathy & Justin Johnson
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ImageNet Detection 2013 - 2015

ImageNet Detection (mAP)

mAP

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Object detection in the wild by Faster R-CNN + ResNet

i
{
u'

cr jcar 0 807
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Code links

- R-CNN
- Caffe + Matlab (https://github.com/rbgirshick/rcnn)

- Faster R-CNN
- Caffe + Matlab (https://github.com/rbgirshick/fast-rcnn)

- Faster R-CNN
- Caffe + Matlab (https://github.com/ShaogingRen/faster_rcnn)
- Caffe + Python (https://github.com/rbgirshick/py-faster-rcnn)

- YOLO
- http://pjreddie.com/darknet/yolo/



https://github.com/rbgirshick/rcnn
https://github.com/rbgirshick/fast-rcnn
https://github.com/ShaoqingRen/faster_rcnn
https://github.com/rbgirshick/py-faster-rcnn
http://pjreddie.com/darknet/yolo/

YOLO:
YOU ONLY LOOK ONCE




L
YOLO algorithm

= Input & Output
- Input : 448x448x%3 resized image
- Output : 7x7x30 tensor (SxSx (BxP + C))

# Bounding box (B) : 2
# Predictions of bounding box (P) : 5

(x,y, h,w, confidence)
# Class probabilities (C) : 20




L
YOLO algorithm

- Divide image into S x S grid
- Within each grid cell predict:

- B Boxes: 4 coordinates + confidence
- Class scores: C numbers

- Regression from imageto 7 X 7 X (5 X B + C) tensor




L
YOLO algorithm

- Network architecture
- Similar to GoogLeNet model
- 1 x 1 reduction layers instead of Inception layer
- Use leaky rectified linear activation function

12

\ || =M,

\ U | m XHX’

28 "

|| 7 7
3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer  Conn. Layer
7x7 x64-5-2 Ix3x192 1x1x128 1x1x256 }X4 1x1x512 })(2 3x3x1024
Maxpool Layer  Maxpeol Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-52 2x2-s5-2 1x1x256 1x1x512 3x3x1024

3x3x512 3x3x1024 3x3x1024-5-2
Maxpool Layer  Maxpool Layer
2x2s-2 2x2-52
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YOLO algorithm

- Loss function

E(6) = coordz OZ =0 1??1 [ — %)%+ (i — )2+ Acoordz OZ] =0 1Ob]

(=)’ + (Vs —ﬁ)]

2 b 2 b 2 b ~
+ Z?:OZj 17 ](C - C) + Anoobj Zf 02] Olnoo J(C - C) +Zf OlfjjzcEclasses(pl(c) — pi())?



YOLO algorithm

- Thresholding

th =0.2 th

I
o



L
YOLO: You Only Look Once

- Faster than Faster R-CNN, but not as good

Real-Time Detectors Train mAP FPS
100Hz DPM [30] 2007 16.0 100
30Hz DPM [20] 2007 26.1 30
Fast YOLO 200742012 52.7 155
YOLO 200742012 634 45
Less Than Real-Time

Fastest DPM [7] 2007 304 15
R-CNN Minus R [20] 2007 53.5 6
Fast R-CNN [14] 2007+2012 700 0.5

Faster R-CNN VGG-16[27] 2007+2012 73.2 7
Faster R-CNN ZF [27] 200742012  62.1 18



Demo Videos

YOLO va

http://pureddie.com/yolo
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Computer Vision Tasks

Classification

+ Localization Object Detection

Classification Segmentation

CAT, DOG, DUCK | CAT, DOG, DUCK

- PN 7
Y s i

Single object Multiple objects

Fei-Fei Li & Andrej Karpathy & Justin Johnson



Semantic segmentation

- Label every pixel
- Don’t differentiate instances

sky. building
&

airplane

grass

object building W sky airplane  water face car
classes 2

bicycle flower. bir book cat dog# body boat

Fei-Fei Li & Andrej Karpathy & Justin Johnson



FULLY CONNECTED LAYERS AS
CONVOLUTION LAYERS




FC layer as Conv layer

- Image classification

IESTES

convolution

1
B
(5) l—LJI_-_-_I
Output vector (1x1x21)

Fully
connected

Query image

- Semantic segmentation

- Given an input image, obtain pixel-wise segmentation mask using a deep Convolutional Neural
Network (CNN)

5 >

Output map(16x16x21)

Query image convolution



FC layer as Conv layer

- Transforming fully connected layers into convolution layers
enables a classification net to output a heatmap

“tabby cat”

SRS ||\l

B =g
o222 Re N |

\

convolutionalization

¢ tabby cat heatmap




Encoder/Decoder

RGB Image

Convolutional Encoder-Decoder

Pooling Indices

I Conv + Batch Normalisation + ReLU
I Pooling I Upsampling Softmax

N

Output

Segmentation




Microsoft Deep Learning Semantic Image
Segmentation




Full-Resolution Residual Networks for Semantic
Segmentation in Street Scenes

Tobias Pohlen, Alexander Hermans,
Markus Mathias, Bastian Leibe

Visual Computing Institute, Computer Vision Group
RWTH Aachen University

& Visual Computing Institute m MEHH\!

Computer Vision

Prof. Dr. Bastian Leibe UNH; EHS@W




D= Gl Al

- U-net



%5bex%5dSemanticSegmentation/%5bworking%5d+u-net.html

MORE APPLICATIONS




BEHAVIOR REFLEX
APPROACH




GPS,
SLAM

Optimal
control

Pedestrian

detection
(HOG+SVM)

3D object
Detection

Dry/wet
road
classificati
on

End-to-
end
Learning

Behavior
Prediction/
Driver
identificati
on




DAVE-1




R - :
DAVE-1

- Development period : 2003-2004
« CNN structure 1s different with today’s usual CNN structure
- Input : two camera (YUV channel)
- 320 x 240 input image are resized to 149 x 58 using LPF
- Learning handle angle from remote control
- Learning 4 days using Intel Xeon 3.0GHz CPU

- Reference DAVE robot

- Muller, Urs, et al. "Off-road obstacle avoidance through end-to-end
learning."Advances in neural information processing systems. 2005.



Overview

2 outputs
6-Layer CNN (Turn Left, Turn
Right)




Input images and CNN Layer results Actual driving result




END TO END LEARNING FOR SELF-
DRIVING CARS

2016 Apr, arXiv, NVIDIA New Jersey



L

l
|

w7 12

X
e

DRIVE PX

* The Project DAVE 2
* NVIDIA started the Project @2015



Main Idea

- Single Camera input
- Steering command output through a trained CNN model

Network
computed
steering

. command Drive by wire
Center camera}—b CNN ™ interface

Primary Motivation

- The driving system avoid:
- the need to recognize human-designated features
like lane markings, guard rails..
- having a collection of “if, then, else” rules



L
DAVE-1(2004) vs DAVE-2(2016)

- The small car — The real car

- Advance performance of training (GPGPU)
- Advanced CNN model

- Newly collected training data



L
Network Architecture

Output: vehicle control

Fully-connected layer
Fully-connected layer
Fully-connected layer

»In order to minimize the MSE
(between steering command output
& human driver)

- YUV Input

- The first layer:
hard-coded normalization """

Convolutional layers
- Convolutional layers:

- TensorFlow codes /

Normalization

Convolutional
feature map
64@1x18

Convolutional
feature map
64@3x20
[

Convolutional
feature map
48@5x22

Convolutional
feature map
36@14x47

Convolutional
feature map
A @D 08

Normalized
input planes
3@66x200

Input planes
3@66x200



end2end_driving.html

NVIDIA autonomous car driving video

https://youtu.be/ghUvQiKec2U

* On road test:
For 10 miles driving, autonomous 98% of the time.


https://youtu.be/qhUvQiKec2U

Trivia, Yann LeCun’s post on fb

- Mr. LeCun participated In
DAVE-1 project, 2004(below)

H. ep rec and

*

Sensors 5;

antenna

Box with

sensors Rx

and Pc-to-

remote interface [§

Joystick to
drive vehicle

Housing for
PC workstation

https://www.facebook.com/yann.lecun/posts/10153527223032143

! Yann LeCun
- 48 262 - @

Our friends at NVIDIA in New Jersey have posted a paper on ArXiv about
"DAVE-2", the Convhet-based self-driving car system trained end to end
that was demonstrated by NVIDIA CEO Jensen Huang at GTC 2016.

Interesting facts:

- The ConviNet maps a single image o a steering angle

- The ConvNet architecture is relatively small so as to run in real fime on
the Drive-PX embedded computer.

- The system is trained with Torch7

- The real-time system that drives the car is written in Torch7? and runs at 30
frames per second on the Drive-PX.

- The training dataset consists of about 72 hours of video with recorded
steering angle provided by a human driver.

- The car has 3 cameras in left, center and right positions so as to simulate
the view if the car were not in the center of the lane.

Paper: hitp:/farxiv.org/abs/1604.07316
Video: https//drive_google_com/.../0B9raQzOpizn1TkRIa241ZnBEcjQ/view

UPDATE: Slashdotted https://hardware slashdot.org/.../nvidia-
gpu-powered-autonomo. ..

[1604.07316] End to End Learning
U_ for Self-Driving Cars

‘ornell

ibrary


https://www.facebook.com/yann.lecun/posts/10153527223032143

DIRECT PERCEPTION
APPROACH

C. Chenetal. ICCV 2015
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SLAM control
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Learning
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L
DeepDriving

- Direct perception

- Estimate the affordance for driving instead of visually parsing the entire
scene or blindly mapping an image to controls

- Mapping an input image to a small number of key perception indicators
that directly related to the affordance of a road/traffic state

- Approach
- Built upon deep convolution neural network
- Trained and tested on TORCS (The Open Racing Car Simulator)

- Automatically learn image features for estimating affordance related to
autonomous driving

- Much simpler structure than the typical mediated perception
approach

- More interpretable than the typical behavior reflex approach



Affordance

toMarking M
o toMarking R

toMharking ML
toMarking MR

(a) angle (b) in lane: toMarking (c) in lane: dist (d) on mark.: toMarking



Affordance indicators

always:
1) angle: angle between the car’s heading and the tangent of the road
“in lane system”, when driving in the lane:
2) toMarking_LL: distance to the left lane marking of the left lane
3) toMarking _ML.: distance to the left lane marking of the current lane
4) toMarking_MR: distance to the right lane marking of the current lane
5) toMarking_RR: distance to the right lane marking of the right lane
6) dist_LL: distance to the preceding car in the left lane
7) dist_ MM: distance to the preceding car in the current lane
8) dist_RR: distance to the preceding car in the right lane
‘““on marking system”, when driving on the lane marking:
9) toMarking_L.: distance to the left lane marking
10) toMarking_M: distance to the central lane marking
11) toMarking_R: distance to the right lane marking
12) dist_L: distance to the preceding car in the left lane
13) dist_R: distance to the preceding car in the right lane



Affordance estimation - CNN Model Learning

- AlexNet
- Supervised Learning (484,815 Training images)

Ad
48X52  128%3%¢*
..

- 13 Affordances

8X 2 282?°;2“‘
e % 192x32  192%x32 & Angle
toMarking_ML
N toMarking_M

_ 192X137  192X137 128X137
5 = 128 X27
48 X55 2048 2048




Training Dataset

- TORCS(The Open Racing Car Simulator)

- Collect indicators (human control data)
- Speed of host car
- Position of host car
- Distance to the preceding car

Tracks (7 Tracks) Cars (22 kinds)

B. Wymann, E. Espie, C. Guionneau, C. Dimitrakakis, “ R. Coulom, and A. Sumner. TORCS, The Open Racing Car Simulator. http://www.torcs.org, 2014



Visualization of Learned models

Flgure 13: Response map of our KITTI- based (Row 1-3)
and TORCS-based (Row 4-5) ConvNets. The ConvNets
have strong responses over nearby cars and lane markings.



Result

'y

PRINCETON
UNIVERSITY

Learning Affordance for Direct
Perception in Autonomous Driving

Chenyi Chen AriSeff Alain Kornhauser Jianxiong Xiao

<)

Princeton University
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KITTI DATASET




Are we ready for Autonomous Driving?
The KITTI Vision Benchmark Suite (CVPR, 2012)

1. Introduction

Developing autonomous systems that are able to assist
humans in everyday tasks is one of the grand challenges in
modern computer science. One example are autonomous
driving systems which can help decrease fatalities caused
by traffic accidents. While a variety of novel sensors have
been used in the past few years for tasks such as recognition,
navigation and manipulation of objects, visual sensors are

I
rarelz exBIOited in robotics aEBIications: Autonomous driv-

inﬁ systems relz mostlz on GPS, laser range finders, radar
as well as very accurate maps of the environment.

360° Velodyne Laserscanner

Stereo Camera Rig ! GPS

Sturm, Jirgen, et al. "A benchmark for the evaluation of RGB-D SLAM systems." 2012 IEEE/RSJ ICIRS2012.



An Empirical Evaluation of Deep Learning on Highway Driving

must keep their hands on the steering wheel and prepare to
control the vehicle in the event of any unexpected obstacle or
catastrophic incident. Financial considerations contribute to a
substantial performance gap between commercially available
auto-pilot systems and fully self-driving cars developed by
Google and others. Namely. today’s self-driving cars_are
equipped with expensive but critical sensors, such as LIDAR,
radar and hiEh—precision GPS coupled with highly detailed
maps.

n today’s production-grade autonomous vehicles, critical
sensors include radar, sonar, and cameras. Long-range vehicle

richer set of features at a fraction of the cost. By advancing
computer vision, cameras could serve as a reliable redundant
sensor for autonomous driving. Despite its potential, computer
vision has yet to assume a significant role in today’s self-
driving cars_Classic_computer vision technigues simply have
not_provided _the robustness reguired for production grade
Jdutomotives: these techniques require intensive hand engineer-
ing, road modeling, and special case handling. Considering
the seemingly infinite number of specific driving situations,
environments, and unexpected obstacles, the task of scaling
classic computer vision to robust, human-level performance
would prove monumental and is likely to be unrealistic.

Huval, Brody, et al. "An empirical evaluation of deep learning on highway driving." arXiv preprint arXiv:1504.01716 (2015).



KITTI Benchmark suite — Sensor Setup

S A7 B E AR A

- 1 Laser scanner : Velodyne HDL-64E

- 2 Grayscale cameras : Point Grey Flea 2 (FL2-14S3M-C)
- 2 Color cameras : Point Grey Flea 2 (FL2-14S3C-C)

== 8§g
T =
- 1 Navigation System(GPS/IMU) : OXTS RT 3003

- 4 Varifocal lenses : Edmund Optics NT59-917

[All heights wrt. road surface |

: Cam-to-CamRect  Velodyne laserscanner
i 054

-te-lmage

(height: 0.30m) Cam 3 (color) =
m
------- Cam 0 (gray) ||v|U to Velo

1.60 m 0.06 mIT

T Q All camera heigh{s 1.65m ?
Wheel I axis Cam 1 (gray) B= T 0.06 m ]
Cam 2 (color) Z : 0.32
Veio—to—Cam GPS/IMU m
1.68 m H (height: 0.93 m)

0.80 m — 0.81m
_ 0.27 m
-

& CamPRect (helght 1.73 m) 0 05 m

]0 48 m

53] wlolel 44

Velodyne HDL-64E Laserscanner

Point Gray Flea 2 X



KITTI Benchmark suite — Ground truth(1/3)

www.cvlibs.net

Stereo & Optical Flow



KITTI Benchmark suite — Ground truth(2/3)
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Object Detection & Tracking
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KITTI Benchmark suite

E}Ohﬂ H] & 7]l o] gt Ground truth7} <= |

Stereo [1],[4]
- Optical Flow [1],[4] Streo Camrs s g ops
- Odometry [1] =
- Object detection [1] a
- Tracking [1] e ,
- Road/Lane detection [1]
- Raw data A| 3[3]

Reference N KITTI Benchmark suite

[1] Geiger, Andreas, Ph|I|p Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? the Kkitti
vision benchmark suite." Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.
IEEE, 2012.

[2] Geiger, Andreas, et al. "Vision meets robotics: The KITTI dataset.” The International Journal of
Robotics Research (2013): 0278364913491297.

[3] Fritsch, Jannik, Tobias Kuehnl, and Andreas Geiger. "A new performance measure and evaluation
benchmark for road detection algorithms." 16th International IEEE Conference on Intelligent
Transportation Systems (ITSC 2013). IEEE, 2013.

[4] Menze, Moritz, and Andreas Geiger. "Object scene flow for autonomous vehicles." Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2015.



