# RESNET: BATCH NORMALIZATION AND SKIP CONNECTION

## Problems with Deeper network

- Vanishing/Exploding gradient problem
- Degradation problem
  - Overly deep plain nets have higher training error



## Solutions for Deeper Networks

ReLU

- Regularization methods
  - Dropout
  - Batch Normalization

Skip connections/Residual Learning

## BATCH NORMALIZATION

#### **Covariate Shift**

- Covariate
  - Predictor variable ~ Independent variable ~ Feature
- Covariate shift
  - $P_S(X) \neq P_T(X)$
  - The feature distribution in the source domain (e.g., training set) is different from that of target domain (e.g., test set).



#### Internal Covariate Shift

• Change of the input distribution for each sub-network during training is called internal covariate shift problem

## **Batch Normalization Algorithm**

For clarity, 
$$x \equiv x^{(k)}$$

**Input:** Values of x over a mini-batch:  $\mathcal{B} = \{x_{1...m}\}$ ; Parameters to be learned:  $\gamma$ ,  $\beta$ 

Output:  $\{y_i = BN_{\gamma,\beta}(x_i)\}$ 

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

 $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ 

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

#### TensorFlow code

- Example Code
- Example Code (LeNet)

## **DROPOUT**

#### **DROP-OUT**

- To cripple neural network by removing hidden units stochastically
  - each hidden unit is set to 0 with probability
    0.5
  - hidden units cannot co-adapt to other units
  - hidden units must be more generally useful



#### LeNet

```
tf.reset_default_graph()
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
x_{image} = tf.reshape(x, [-1.28.28.1])
with tf.name_scope('CONV_LAYER_1'):
    \(\text{\Lonv1} = \text{weight_variable}( [5.5.1.32], \text{name='\text{\text{\Lonv1'}}}\)
    b_conv1 = bias_variable( [32], 1.0, name='bconv1' )
    h_{conv1} = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_{pool1} = max_{pool} 2x2(h_{conv1})
with tf.name_scope('CONV_LAYER_2'):
    \(\big|_\text{conv2} = \text{weight_variable}( [5.5.32.64], \text{name='\bigvertconv2'})\)
    b_conv2 = bias_variable( [64], 1.0, name='bconv2' )
    h_{conv2} = tf.nn.relu(conv2d(h_{pool1}, W_{conv2}) + b_{conv2})
    h pool2 = max pool 2x2( h conv2 )
with tf.name scope('FC LAYER 1'):
    W_fc1 = weight_variable([7*7*64, 1024], name='\( \text{Vfc1}' \)
    b_fc1 = bias_variable( [1024], 1.0, name='bfc1' )
    h pool2 flat = tf.reshape(h pool2, [-1.7*7*64])
    h_fc1 = tf.nn.relu( tf.matmul(h_pool2_flat, W_fc1) + b_fc1 )
with tf.name scope('FC LAYER 2'):
    W_fc2 = weight_variable([1024,10], name='\fc2')
    b_fc2 = bias_variable( [10], 0.0, name='bfc2' )
    pred = tf.matmul(h_fc1, W_fc2) + b_fc2
with tf.name_scope('loss'):
    cross entropy = tf.reduce mean( tf.nn.sigmoid cross entropy with logits(logits=pred.labels=y))
with tf.name_scope('accuracy'):
    correct_prediction = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
saver = tf.train.Saver()
```





## LeNet with dropout

```
tf.reset_default_graph()
x = tf.placeholder(tf.float32, [None, 784])
v = tf.placeholder( tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
                                          x_{image} = tf.reshape(x, [-1,28,28,1])
with tf.name_scope('CONV_LAYER_1'):
    W_conv1 = weight_variable( [5,5,1,32], name='Wconv1' )
   b_conv1 = bias_variable( [32], 1.0, name='bconv1' )
   h_conv1 = tf.nn.relu( conv2d(x_image, W_conv1) + b_conv1 )
   h pool1 = max pool 2x2( h conv1 )
with tf.name scope('CONV LAYER 2'):
    \Psi_{conv2} = \text{weight\_variable}([5,5,32,64], name='\psi_{conv2}')
   b_conv2 = bias_variable( [64], 1.0, name='bconv2' )
   h_conv2 = tf.nn.relu( conv2d(h_pool1, W_conv2) + b_conv2 )
   h pool2 = max pool 2x2( h conv2 )
with tf.name_scope('FC_LAYER_1'):
    W_fc1 = weight_variable([7*7*64, 1024], name='Wfc1')
   b_fc1 = bias_variable( [1024], 1.0, name='bfc1' )
   h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*64])
   h fc1 = tf.nn.relu( tf.matmul(h pool2 flat, \( \psi \) fc1 ) + b fc1 )
with tf.name_scope('Drop_out2'):
   h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
                                                  with tf.name_scope('FC_LAYER_2'):
    W_fc2 = weight_variable([1024,10], name='Wfc2')
   b_fc2 = bias_variable( [10], 0.0, name='bfc2' )
   with tf.name_scope('loss'):
    cross_entropy = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=pred, labels=y))
with tf.name scope('accuracy'):
    correct_prediction = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
   accuracy = tf.reduce mean(tf.cast(correct prediction."float"))
saver = tf.train.Saver()
```

#### show\_graph(tf.get\_default\_graph().as\_graph\_def())





## SKIP CONNECTION RESIDUAL LEARNING

#### Plain block

• Difficult to make identity mapping because of multiple nonlinear layers



#### Residual Block

- Identity mapping shortcut connections
  - If identity were optimal, easy to set weight as 0
  - If optimal mapping is closer to identity, easier to find small fluctuations
  - Add neither extra parameter nor computational complexity



### Very Deep Networks





Figure 5. A deeper residual function  $\mathcal{F}$  for ImageNet. Left: a building block (on  $56 \times 56$  feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

|            |             |                                                                                    | •                                                                                       |                     |                     |                      |
|------------|-------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------|---------------------|----------------------|
| layer name | output size | 18-layer                                                                           | 34-layer                                                                                | 50-layer            | 101-layer           | 152-layer            |
| conv1      | 112×112     |                                                                                    |                                                                                         | 7×7, 64, stride 2   |                     |                      |
|            |             |                                                                                    | 3×3 max pool, stride 2                                                                  |                     |                     |                      |
| conv2_x    | 56×56       | $\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right] \times 2$   | \[ \begin{align*} 3 \times 3, 64 \ 3 \times 3, 64 \end{align*} \] \times 3              | 1×1,64              | [ 1×1, 64 ]         | [ 1×1, 64 ]          |
|            |             |                                                                                    |                                                                                         | 3×3, 64 ×3          | 3×3, 64 ×3          | 3×3, 64 ×3           |
|            |             |                                                                                    |                                                                                         | 1×1, 256            | 1×1, 256            | 1×1, 256             |
| conv3_x    | 28×28       | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$ | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$      | 1×1, 128            | [ 1×1, 128 ]        | [ 1×1, 128 ]         |
|            |             |                                                                                    |                                                                                         | 3×3, 128 ×4         | 3×3, 128 ×4         | 3×3, 128 ×8          |
|            |             |                                                                                    |                                                                                         | 1×1,512             | [ 1×1,512 ]         | [ 1×1,512 ]          |
| conv4_x    | 14×14       | $\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$     | $\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$ | 1×1, 256            | [ 1×1, 256 ]        | [ 1×1, 256 ]         |
|            |             |                                                                                    |                                                                                         | 3×3, 256 ×6         | 3×3, 256 ×23        | 3×3, 256 ×36         |
|            |             |                                                                                    |                                                                                         | 1×1, 1024           | 1×1, 1024           | [ 1×1, 1024 ]        |
| conv5_x    | 7×7         | $\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$        | $\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$             | 1×1,512             | [ 1×1,512 ]         | [ 1×1,512 ]          |
|            |             |                                                                                    |                                                                                         | 3×3, 512 ×3         | 3×3,512 ×3          | 3×3,512 ×3           |
|            |             |                                                                                    |                                                                                         | 1×1, 2048           | 1×1, 2048           | 1×1, 2048            |
|            | 1×1         |                                                                                    | average pool, 1000-d fc, softmax                                                        |                     |                     |                      |
| FLOPs      |             | 1.8×10 <sup>9</sup>                                                                | 3.6×10 <sup>9</sup>                                                                     | 3.8×10 <sup>9</sup> | 7.6×10 <sup>9</sup> | 11.3×10 <sup>9</sup> |
|            |             |                                                                                    |                                                                                         |                     |                     |                      |



| method                     | top-1 err. | top-5 err.        |
|----------------------------|------------|-------------------|
| VGG [41] (ILSVRC'14)       | -          | 8.43 <sup>†</sup> |
| GoogLeNet [44] (ILSVRC'14) | -          | 7.89              |
| VGG [41] (v5)              | 24.4       | 7.1               |
| PReLU-net [13]             | 21.59      | 5.71              |
| BN-inception [16]          | 21.99      | 5.81              |
| ResNet-34 B                | 21.84      | 5.71              |
| ResNet-34 C                | 21.53      | 5.60              |
| ResNet-50                  | 20.74      | 5.25              |
| ResNet-101                 | 19.87      | 4.60              |
| ResNet-152                 | 19.38      | 4.49              |













#### **CAFFE**

- Deep networks are compositional models
- a collection of inter-connected layers that work on chunks of data.
- A network defines the entire model bottom-to-top from input data to loss

## Example

- Neural Network
- <u>LeNet example</u>
- Non-image example