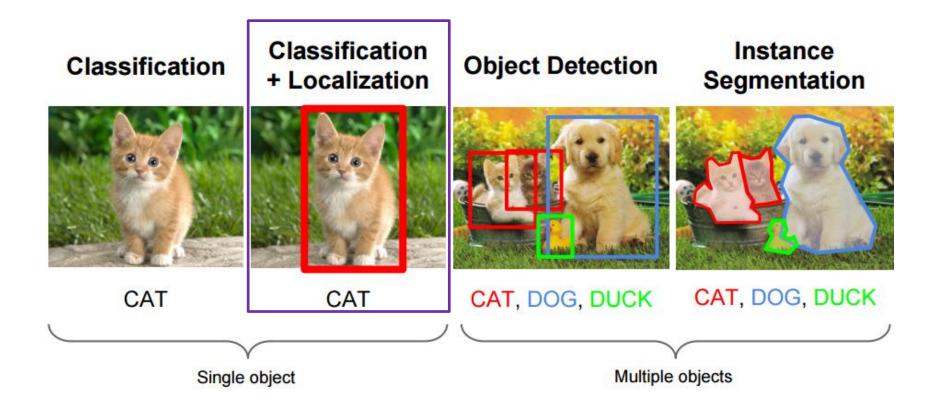
OBJECT DETECTION

HYUNG IL KOO

INTRODUCTION

Computer Vision Tasks



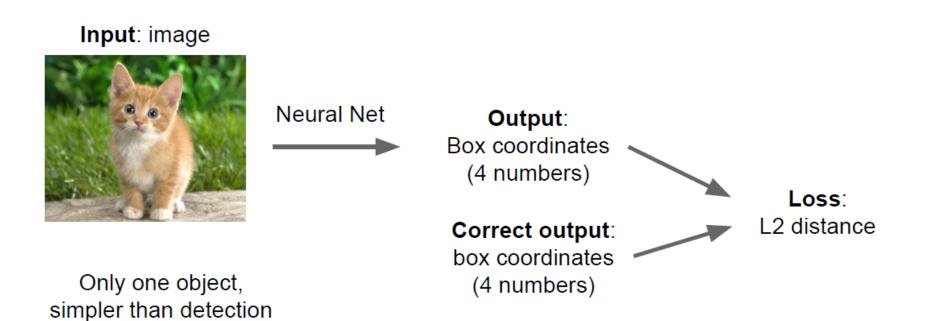
Classification + Localization

- Classification: C-classes
 - Input: image
 - Output: class label
 - Evaluation metric: accuracy

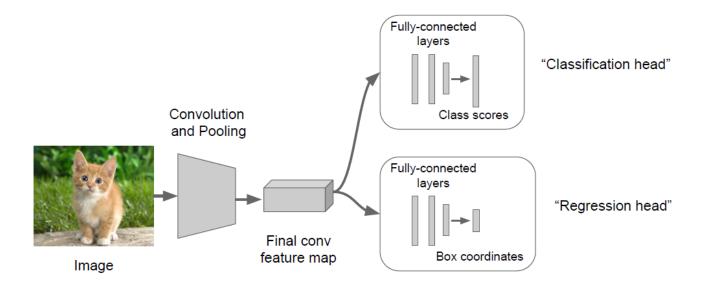
- Localization
 - Input: image
 - Output: box in the image (x, y, w, h)
 - Evaluation metric: IoU (intersection over union)
- Classification + Localization

Classification + Localization

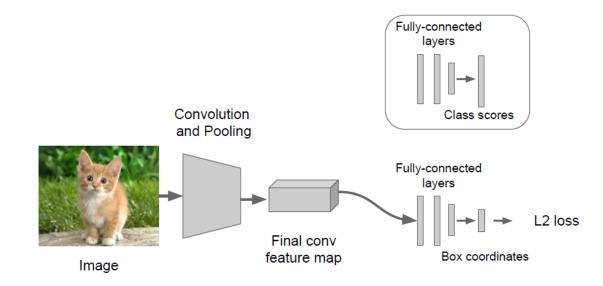
- ImageNet
 - 1000 classes (same as classification)
 - Each image has 1 class, at least one bounding box
 - ~800 training images per class
 - Algorithm produces 5 (class, box) guesses
 - Example is correct if
 - at least one one guess has correct class, and
 - bounding box at least 0.5 intersection over union (IoU)



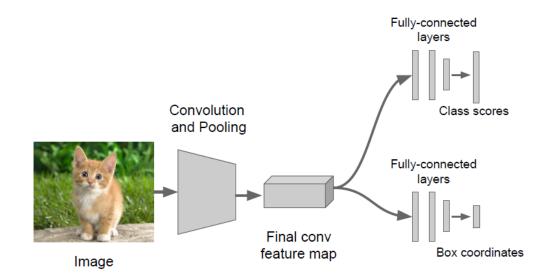
- Steps
 - Train (or download) a classification model (AlexNet, VGG, GoogLeNet)
 - Attach new fully-connected "regression head" to the network



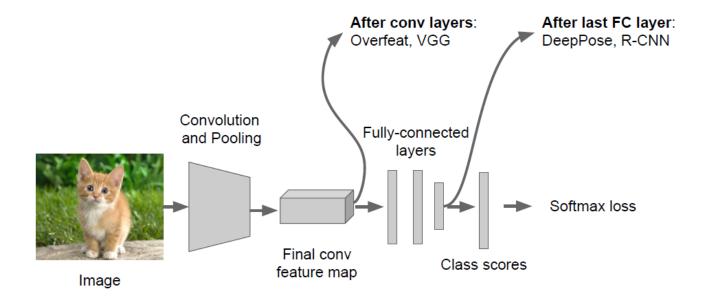
- Steps
 - Train (or download) a classification model (AlexNet, VGG, GoogLeNet)
 - Attach new fully-connected "regression head" to the network
 - Train the regression head only with SGD and L2 loss



- Steps
 - Train (or download) a classification model (AlexNet, VGG, GoogLeNet)
 - Attach new fully-connected "regression head" to the network
 - Train the regression head only with SGD and L2 loss
 - At test time use both heads



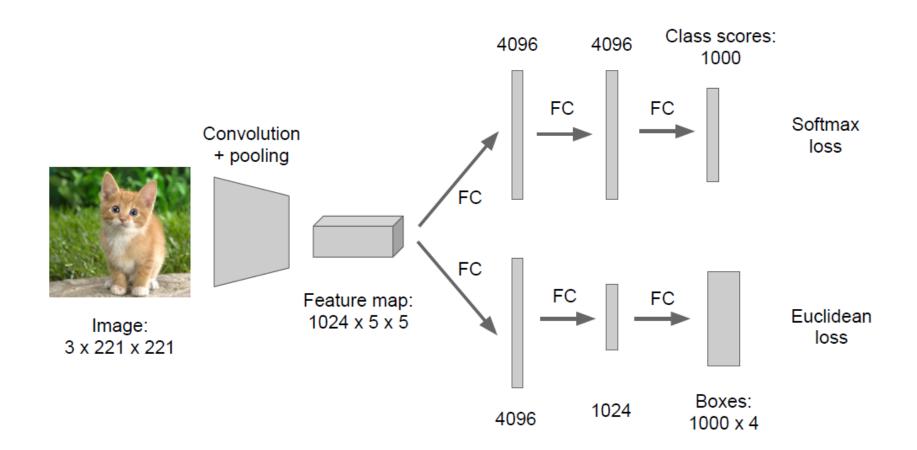
Where to attach the regression head?



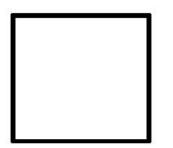
Idea #2: Sliding Window

- Run classification + regression network at multiple locations on a high resolution image
- Combine classifier and regressor predictions across all scales for final prediction

Sliding Window: Overfeat



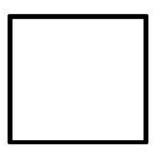
Sliding Window: Overfeat



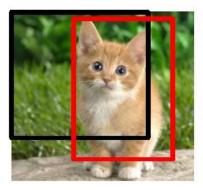
Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

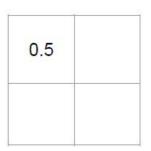
Fei-Fei Li & Andrej Karpathy & Justin Johnson



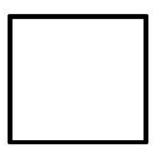
Network input: 3 x 221 x 221



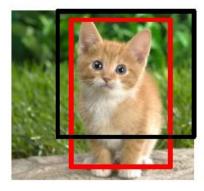
Larger image: 3 x 257 x 257



Classification scores: P(cat)

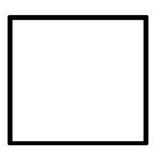


Network input: 3 x 221 x 221

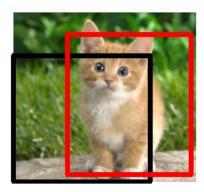


Larger image: 3 x 257 x 257

Classification scores: P(cat)



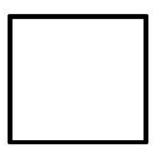
Network input: 3 x 221 x 221



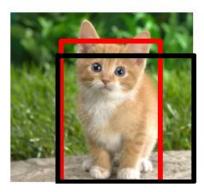
Larger image: 3 x 257 x 257

0.5	0.75
0.6	

Classification scores: P(cat)



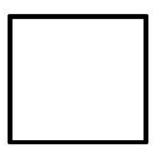
Network input: 3 x 221 x 221



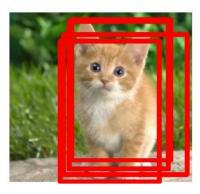
Larger image: 3 x 257 x 257

0.5	0.75
0.6	0.8

Classification scores: P(cat)



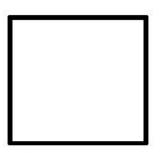
Network input: 3 x 221 x 221



Larger image: 3 x 257 x 257

0.5	0.75
<mark>0.6</mark>	0.8

Classification scores: P(cat)



Network input: 3 x 221 x 221

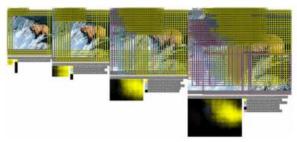
Larger image: 3 x 257 x 257 0.8

Classification score: P (cat)

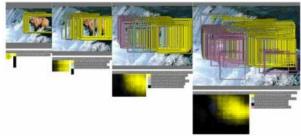
Sliding Window: Overfeat

• In practice, use many sliding window location and multiple scales

Window positions + score maps

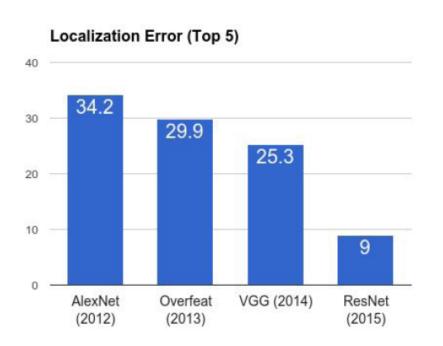


Box regression outputs



Final Predictions

ImageNet Classification + Localization



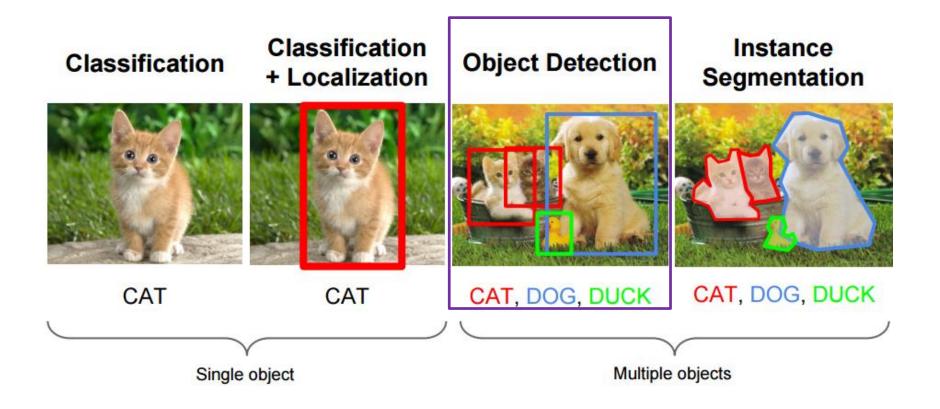
AlexNet: Localization method not published

Overfeat: Multiscale convolutional regression with box merging

VGG: Same as Overfeat, but fewer scales and locations; simpler method, gains all due to deeper features

ResNet: Different localization method (RPN) and much deeper features

Computer Vision Tasks



Detection as regression?

DOG, (x, y, w, h) CAT, (x, y, w, h) CAT, (x, y, w, h) DUCK (x, y, w, h)

= 16 numbers

Detection as regression?

• Need variable sized outputs

CAT, (x, y, w, h) CAT, (x, y, w, h)

CAT (x, y, w, h)

= many numbers

Detection as classification

- Detection as classification
 - Problem: Need to test many positions and scales
 - Solution: If your classifier is fast enough, just do it
- Detection with a CNN classifier
 - Problem: Need to test many positions and scales, and use a computationally demanding classifier
 - Solution: Only look at a tiny subset of possible positions

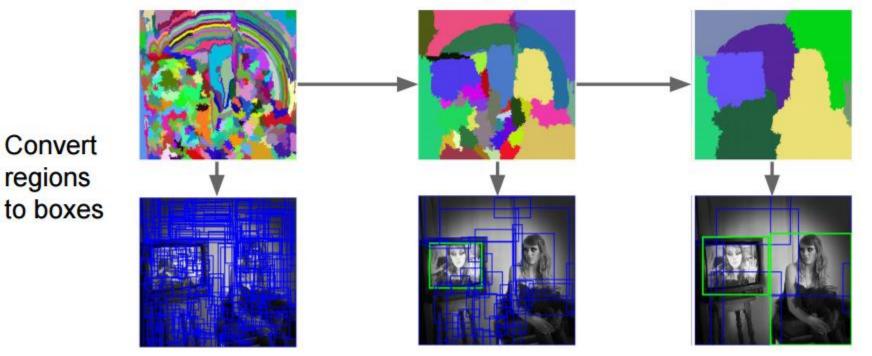
CAT? NO DOG? NO

CAT? YES!

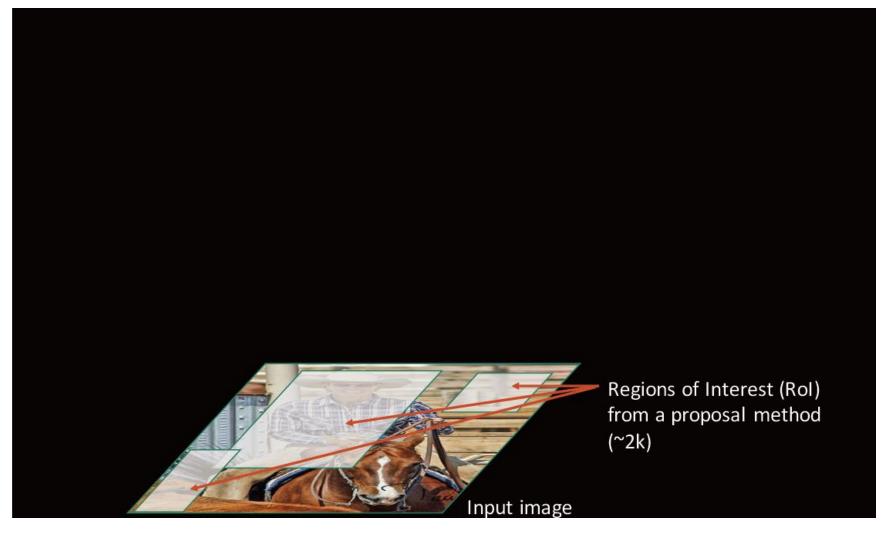
CAT? NO DOG? NO

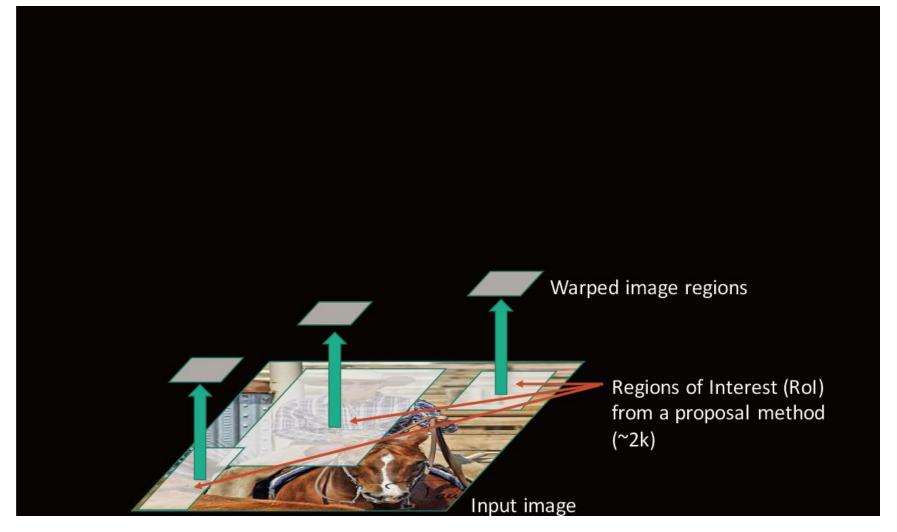
Region Proposals

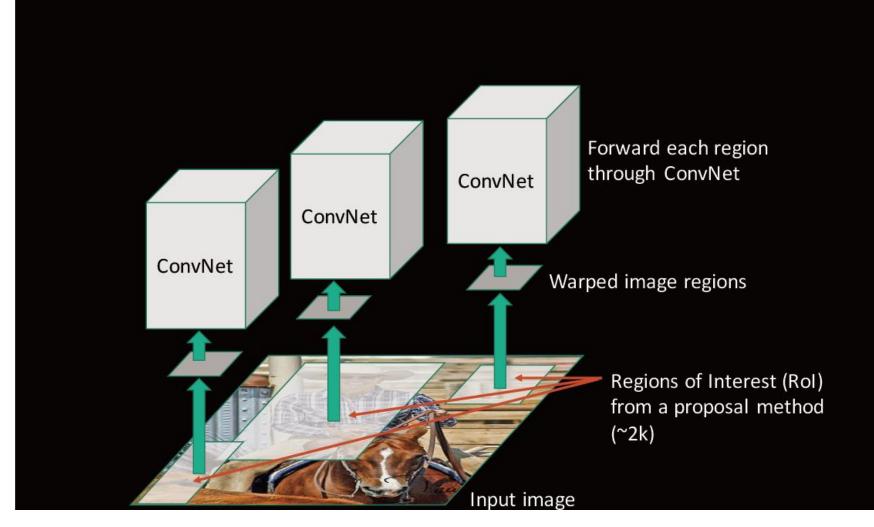
Bottom-up segmentation, merging regions at multiple scales

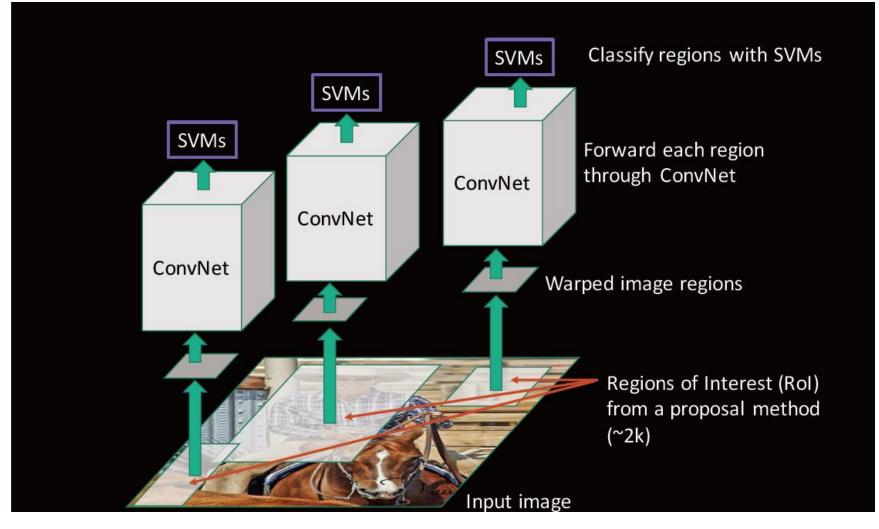


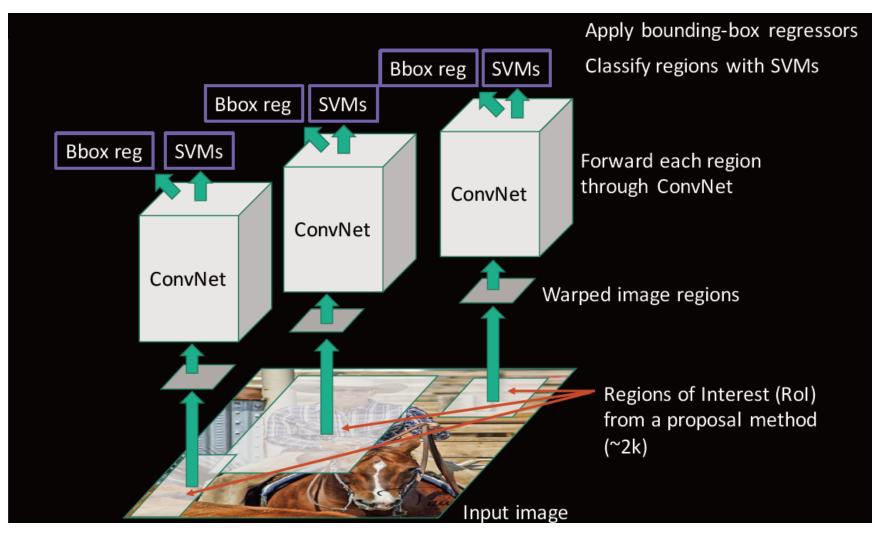
R-CNN (REGIONS WITH CNN FEATURES)





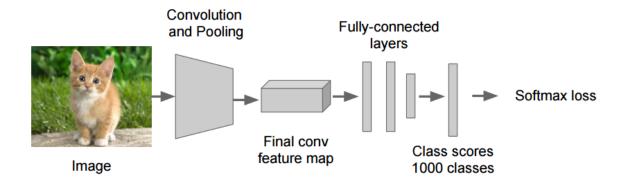




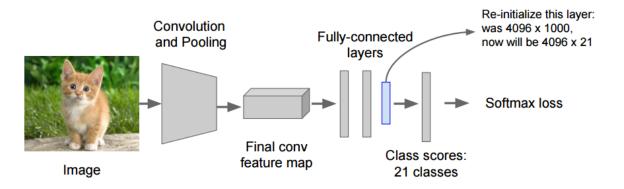


Training steps

• Step 1: Train a classification model for ImageNet (AlexNet)



• Step 2: Fine-tune model for detection (20 object classes + backgrounds)

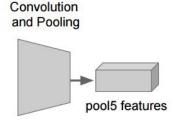


Training steps

- Step 3: Extract features
 - Extract region proposals for all images
 - For each region: warp to CNN input size, run forward through CNN, save pool5 features to disk (~ 200 GB)

Region Proposals

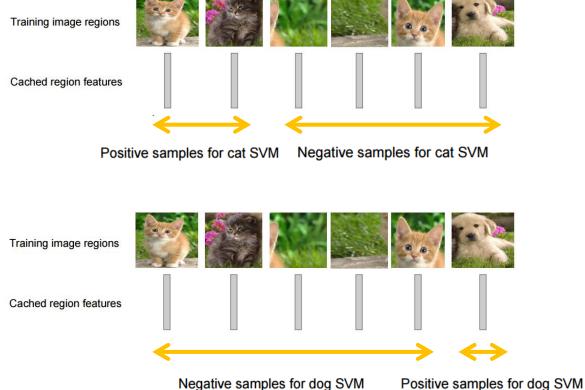
Crop + Warp



Forward pass

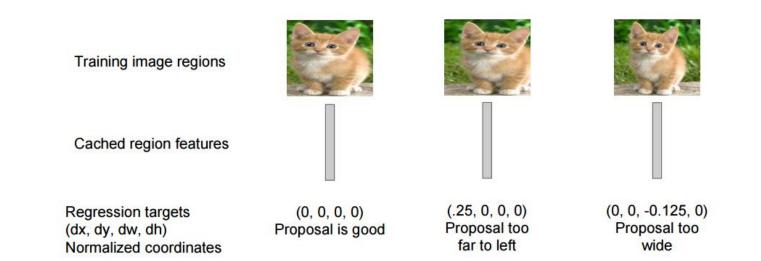
Training steps

• Step 4: Train one binary SVM per class to classify region features



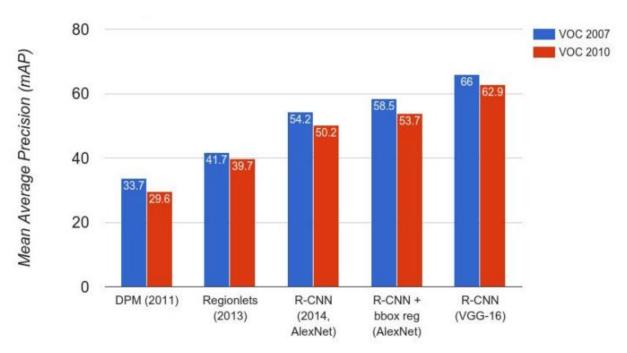
Training steps

 Step 5 (bounding-box regression): For each class, train a linear regression model to map from cached features to offsets to GT boxes to make up for "slightly wrong" proposals



Evaluation

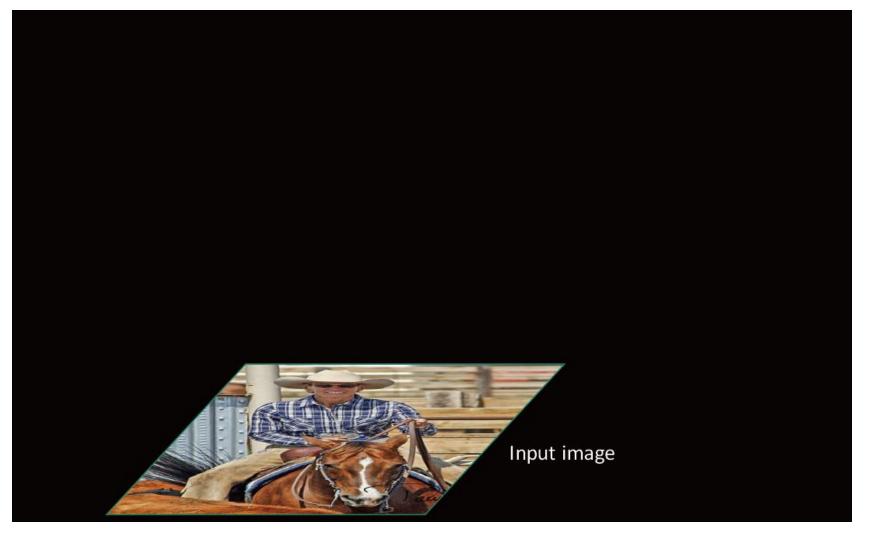
- We use a metric called "mean average precision" (mAP)
- Compute average precision (AP) separately for each class, then average over classes



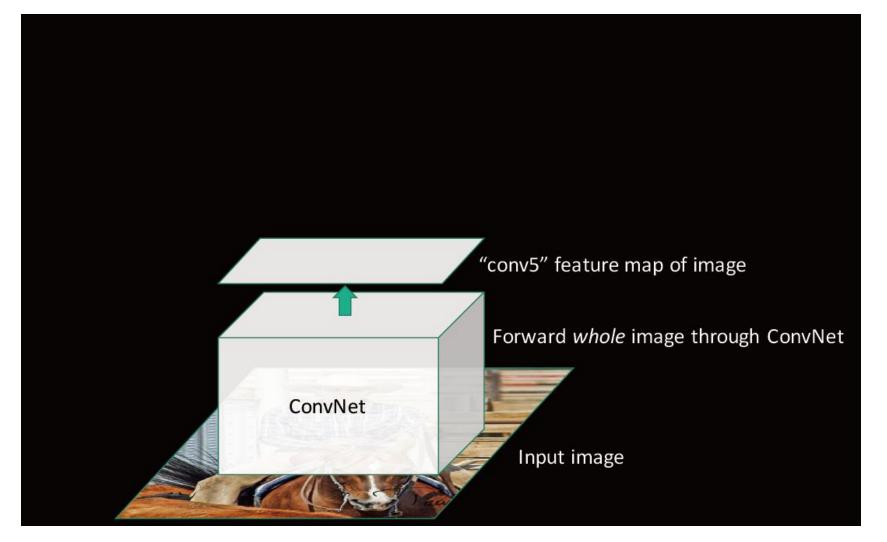
Limitations of R-CNN

- Ad hoc training objectives
 - Fine tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding box regressions (least squares)
- Training is slow (84h), takes a lot of disk space
- Inference (detection) is slow
 - 47s / image with VGG16
 - Fixed by SPP net [He et al. ECCV14]

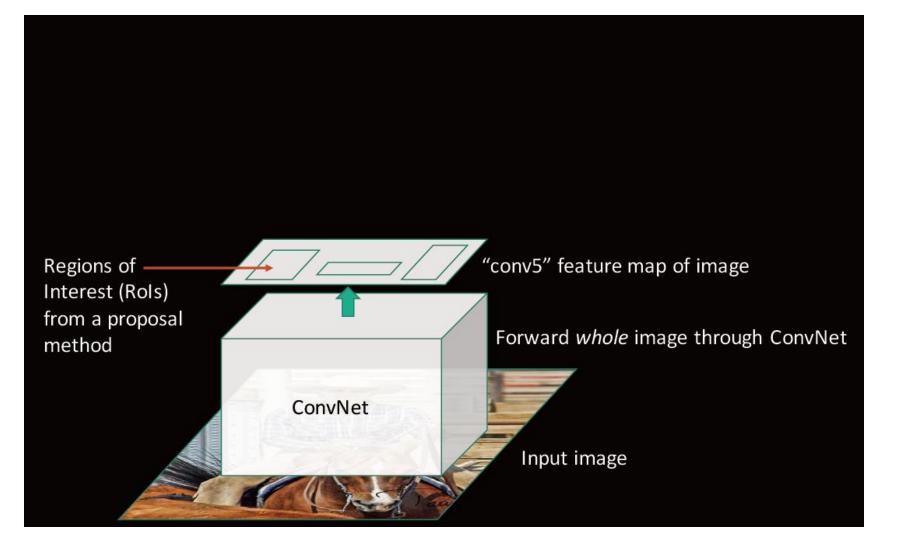
SPATIAL PYRAMID POOLING-NET

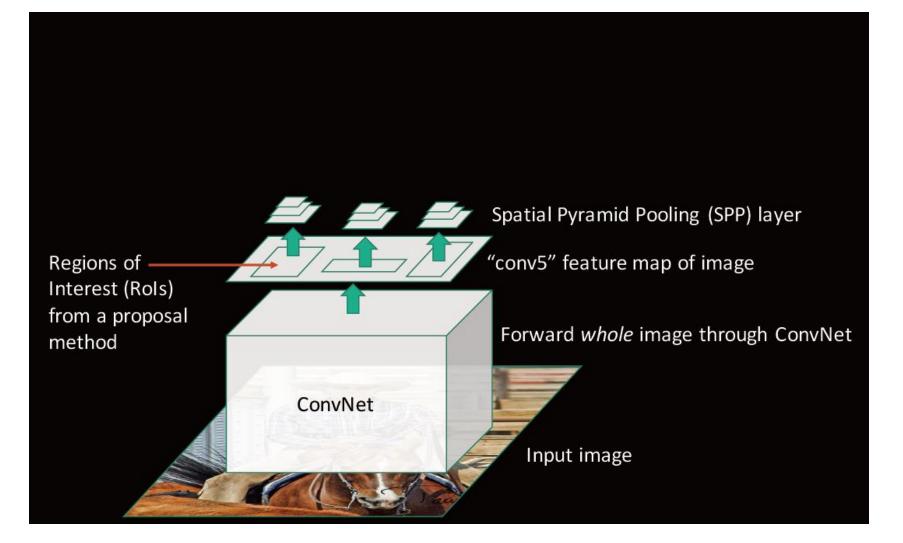


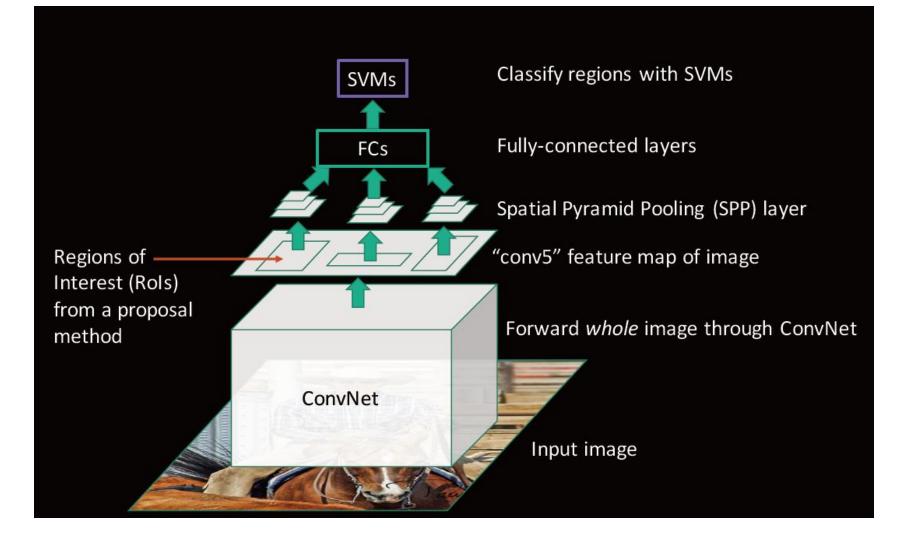
Slide credit: Ross Girschick

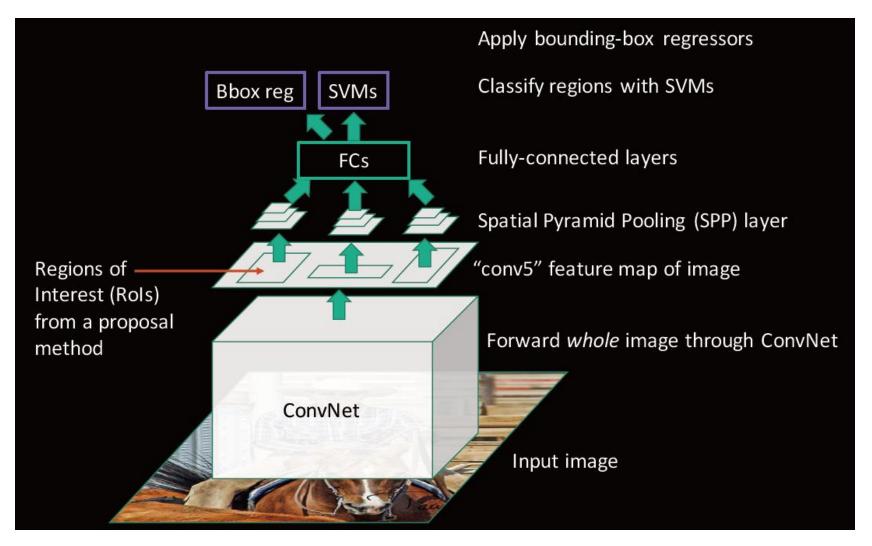


Slide credit: Ross Girschick

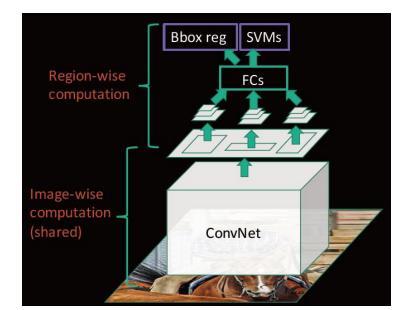






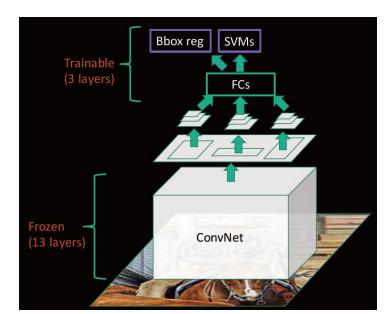


- What's good?
 - It makes testing fast



• What's wrong?

- Ad hoc training objectives
- Training is slow (25h), takes a lot of disk space
- Cannot update parameters below SPP layer during training

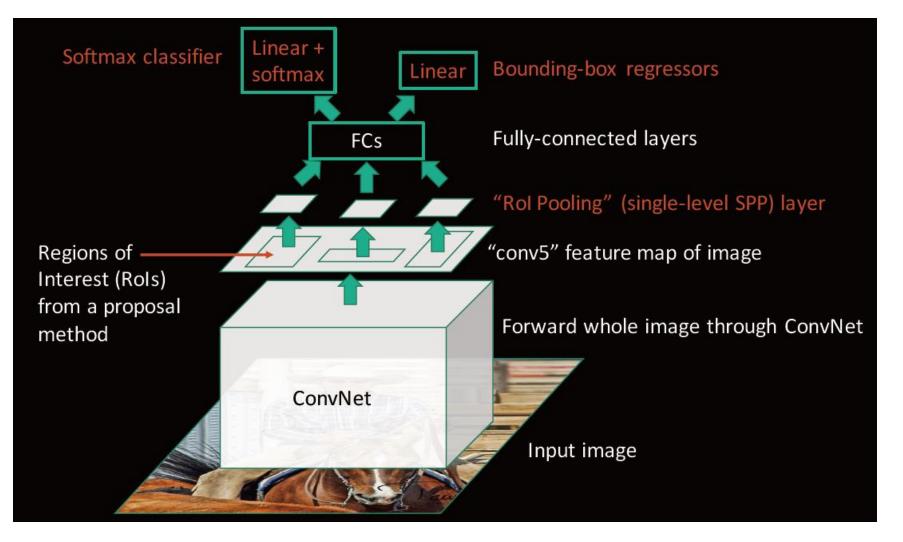


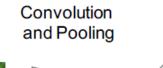
FAST R-CNN

Fast R-CNN

- Fast test time, like SPP-net
- One network, trained in one stage
- Higher mean average precision than R-CNN and SPP net

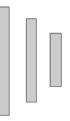
Fast R-CNN (test time)



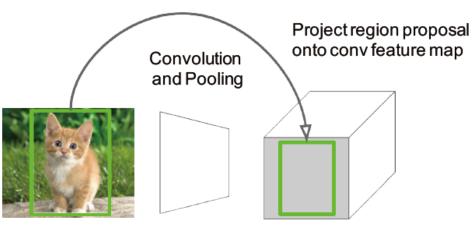


Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: $C \times H \times W$ with region proposal Fully-connected layers



Problem: Fully-connected layers expect low-res conv features: C x h x w



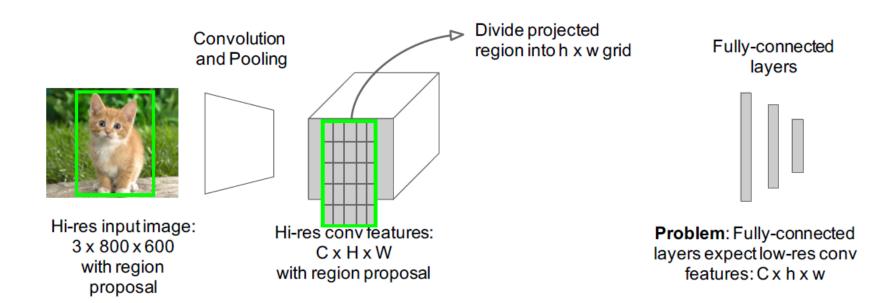
Fully-connected layers

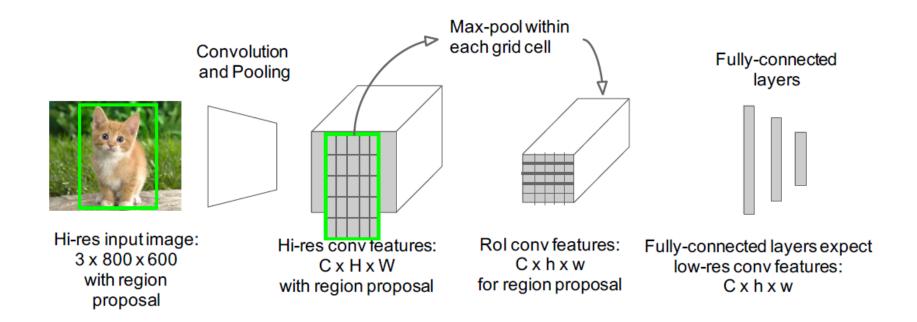
Problem: Fully-connected layers expect low-res conv features: C x h x w

Hi-res input image: 3 x 800 x 600 with region proposal

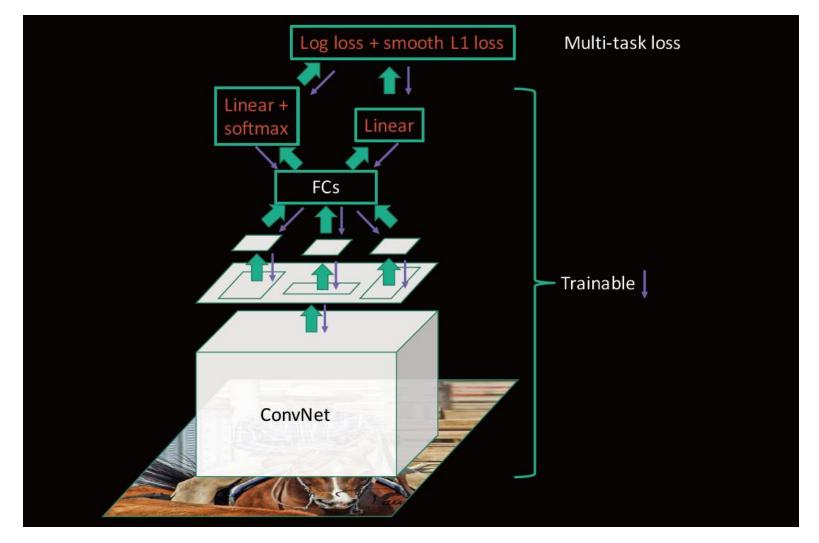
Hi-res conv features: $C \times H \times W$ with region proposal

Fei-Fei Li & Andrej Karpathy & Justin Johnson





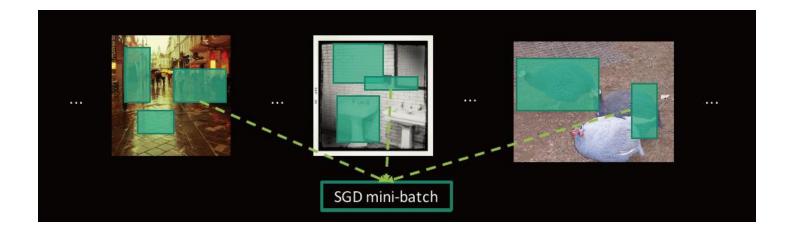
Fast R-CNN (training time)



Slide credit: Ross Girschick

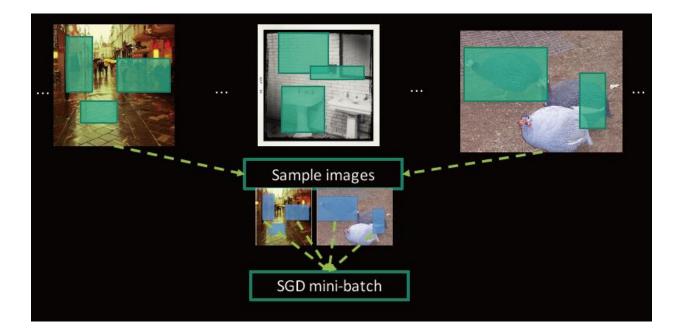
Fast R-CNN training

- Slow R-CNN and SPP-net use region-wise sampling to make mini-batches
 - Sample 128 example RoIs uniformly at random
 - Examples will come from different images with high probability



Fast R-CNN training

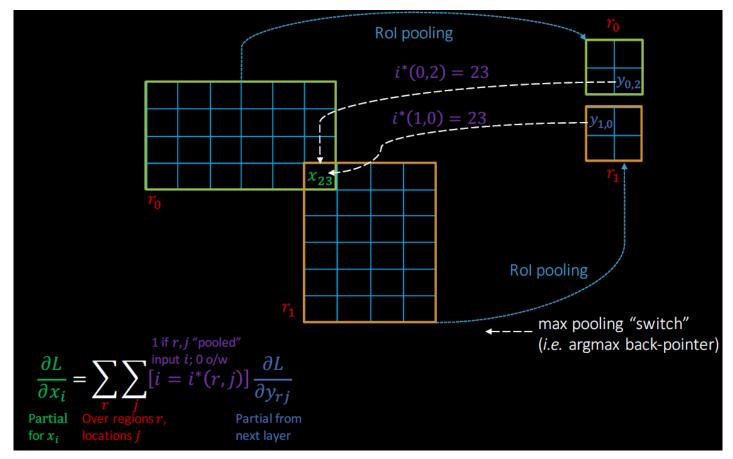
• Solution: use hierarchical sampling to build mini-batches



- Sample a small number of images (2)
- Sample many examples from each image (64)

Fast R-CNN training

• Differentiable ROI pooling

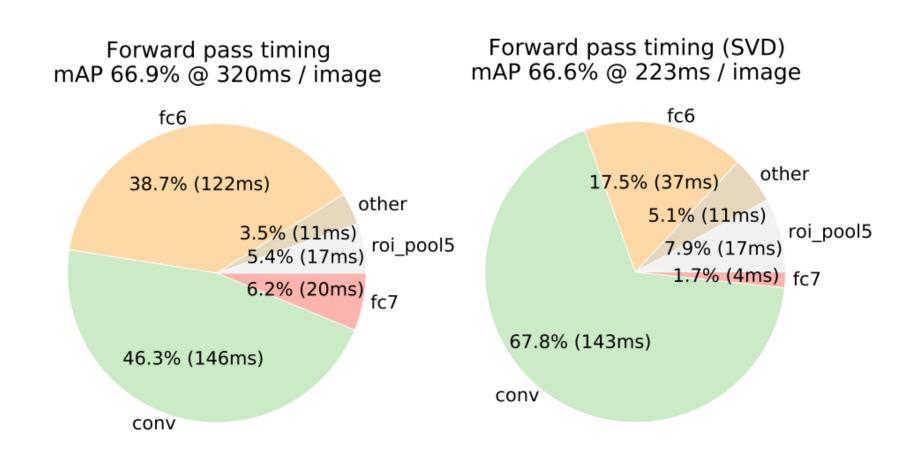


Main results

	Fast R-CNN	R-CNN	SPP-net
Train time (h)	9.5	84	25
Speedup	8.8 x	1x	3.4x
Test time/image	0.32s	47.0s	2.3s
Test speedup	146x	1x	20x
mAP	66.9	66.0	63.1

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

Further test-time speedups



Slide credit: Ross Girschick

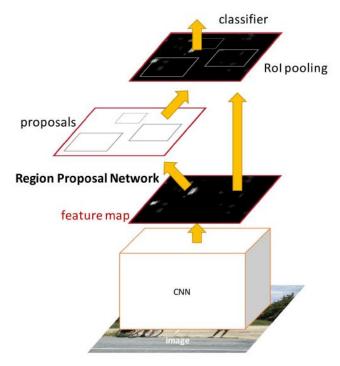
Fast R-CNN

- Pros
 - End-to-end training of deep ConvNets for detection
 - Fast training times
- Cons
 - Out-of-network region proposals
 - Selective search: 2s/image
- Solution
 - Test-time speeds don't include region proposals
 - Just make the CNN do region proposals too!

FASTER R-CNN

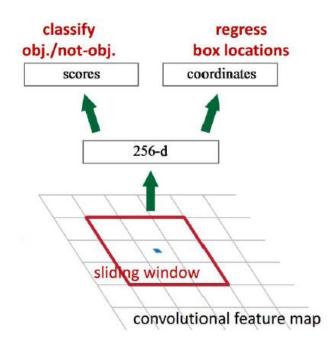
Faster RCNN

- Insert a **Region Proposal Network (RPN)** after the last convolutional layer
- RPN trained to produce region proposals directly; no need for external region proposals!
- After RPN, use RoI Pooling and an upstream classifier and bbox regressor just like Fast R-CNN



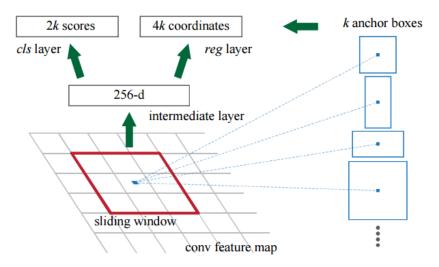
Faster R-CNN: RPN

- Slide a small window on the feature map
- Build a small network for:
 - classifying object or not-object, and
 - regressing bbox locations
- Position of the sliding window provides localization information with reference to the image
- Box regression provides finer localization information with reference to this sliding window



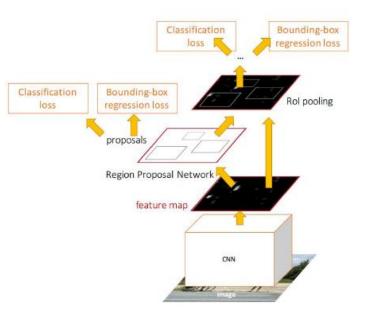
Faster R-CNN

- Use k (=9) anchor boxes at each location
- Anchors are translation invariant: use the same ones at every location
- Regression gives offsets from anchor boxes
- Classification gives the probability that each (regressed) anchor shows an object



Faster R-CNN: training

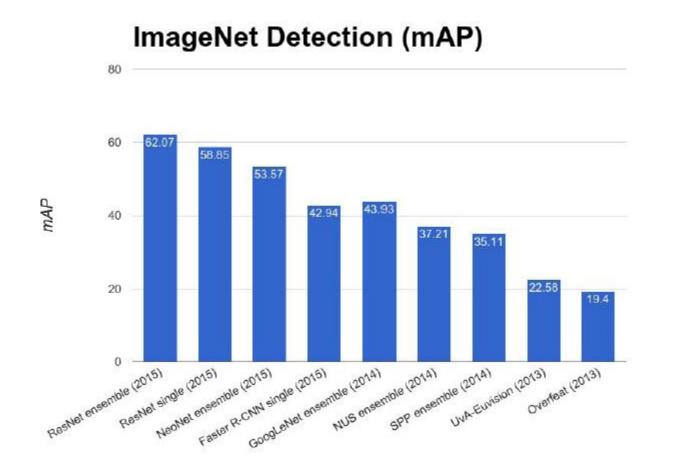
- Four loss functions
 - RPN classification (anchor good / bad)
 - RPN regression (anchor -> proposal)
 - Fast R-CNN classification (over classes)
 - Fast R-CNN regression (proposal -> box)



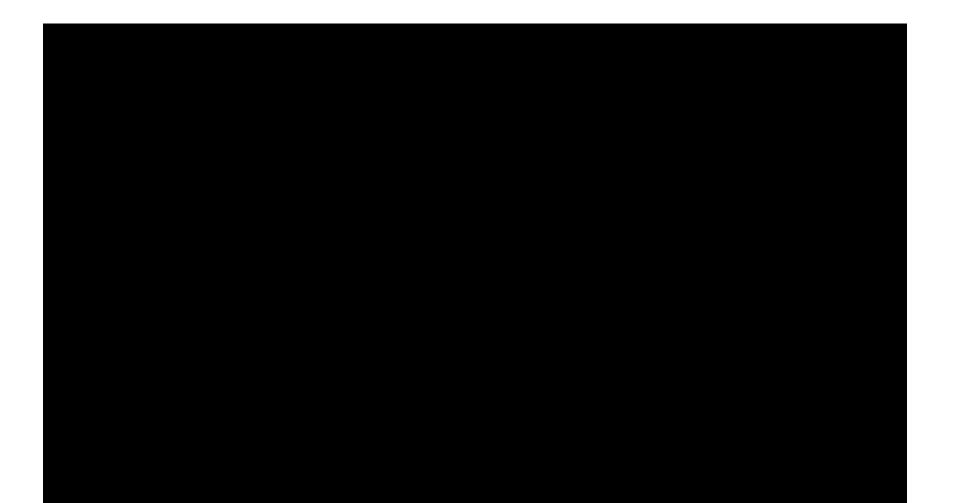
Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
Speedup	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

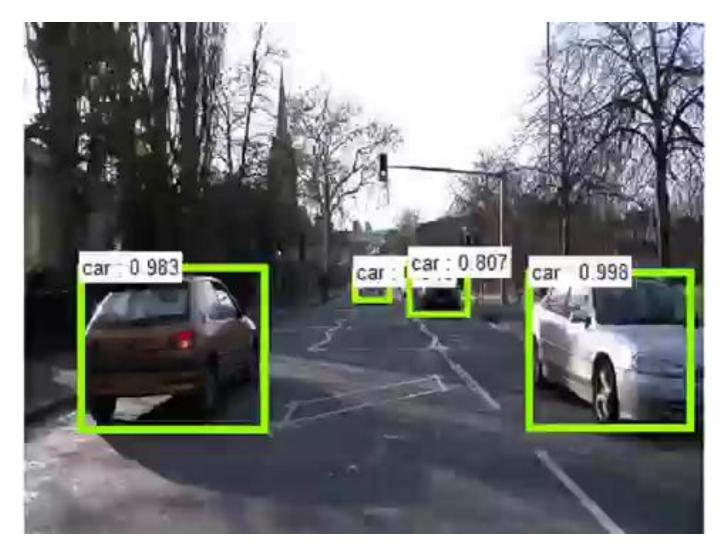
ImageNet Detection 2013 - 2015



Results



Object detection in the wild by Faster R-CNN + ResNet

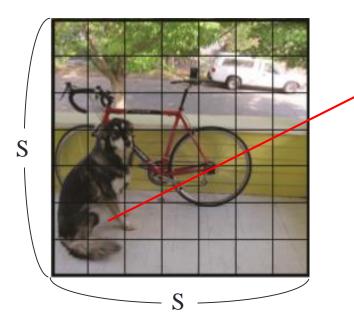


YOLO: YOU ONLY LOOK ONCE

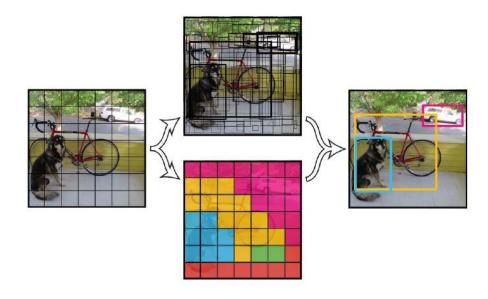
YOLO algorithm

Input & Output

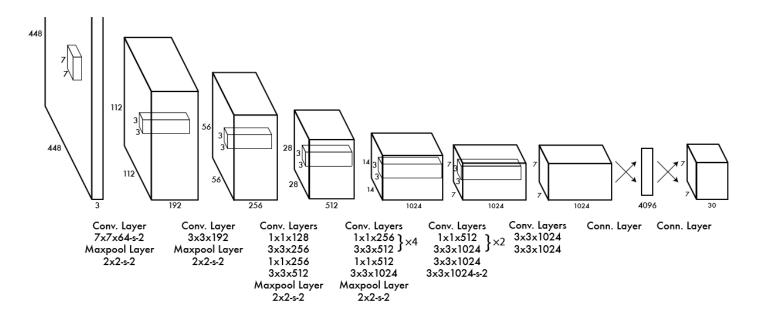
- Input : 448×448×3 resized image
- Output : $7 \times 7 \times 30$ tensor ($S \times S \times (B \times P + C)$)



- Divide image into S x S grid
- Within each grid cell predict:
 - B Boxes: 4 coordinates + confidence
 - Class scores: C numbers
- Regression from image to $7 \times 7 \times (5 \times B + C)$ tensor



- Network architecture
 - Similar to GoogLeNet model
 - 1×1 reduction layers instead of Inception layer
 - Use leaky rectified linear activation function



• Leaky rectified linear activation function

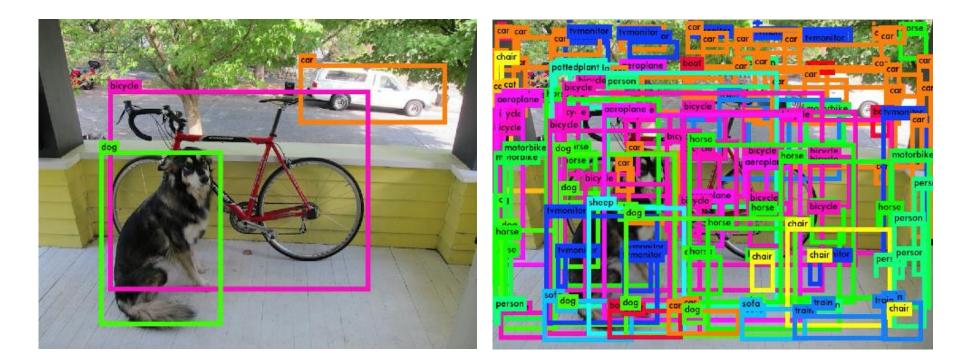
10 -

х

Loss function

$$\begin{split} E(\theta) &= \lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbf{1}_{i,j}^{obj} [(x_i - \hat{x_i})^2 + (y_i - \hat{y_i})^2] + \lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbf{1}_{i,j}^{obj} \left[\left(\sqrt{w_i} - \sqrt{\hat{w_i}} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h_i}} \right)^2 \right] \\ &+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbf{1}_{i,j}^{obj} (C_i - \widehat{C}_i)^2 + \lambda_{noobj} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbf{1}_{i,j}^{noobj} (C_i - \widehat{C}_i)^2 + \sum_{i=0}^{S^2} \mathbf{1}_{i,j}^{obj} \sum_{c \in classes}^{B} (p_i(c) - \widehat{p_i}(c))^2 \end{split}$$

• Thresholding



$$th = 0.2$$

th = 0

YOLO: You Only Look Once

• Faster than Faster R-CNN, but not as good

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [30]	2007	16.0	100
30Hz DPM [30]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [37]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[27]	2007+2012	73.2	7
Faster R-CNN ZF [27]	2007+2012	62.1	18

Demo Videos

-0 v2YOU

http://pureddie.com/yolo

SUMMARY

Object Detection Summary

- Find a variable number of objects by classifying image regions
- Before CNNs:
 - dense multiscale sliding window (HoG, DPM)
- R-CNN:
 - Selective Search + CNN classification / regression
- Fast R-CNN:
 - Swap order of convolutions and region extraction
- Faster R-CNN:
 - Compute region proposals within the network

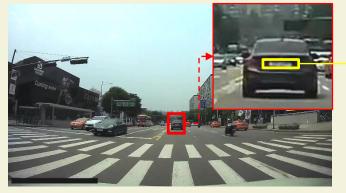
Code links

- R-CNN
 - Caffe + Matlab (<u>https://github.com/rbgirshick/rcnn</u>)
- Faster R-CNN
 - Caffe + Matlab (<u>https://github.com/rbgirshick/fast-rcnn</u>)
- Faster R-CNN
 - Caffe + Matlab (<u>https://github.com/ShaoqingRen/faster_rcnn</u>)
 - Caffe + Python (<u>https://github.com/rbgirshick/py-faster-rcnn</u>)
- YOLO
 - http://pjreddie.com/darknet/yolo/

BACKUPS

CAR LICENSE PLATE DETECTION

목표: 특수목적 차량(경찰차) 의 블랙박스 영상에서 번호판 검출



 \rightarrow License Plate?

해상도 문제로 인해 영상에서 바로 번호판을 검출하는 것은 어려움

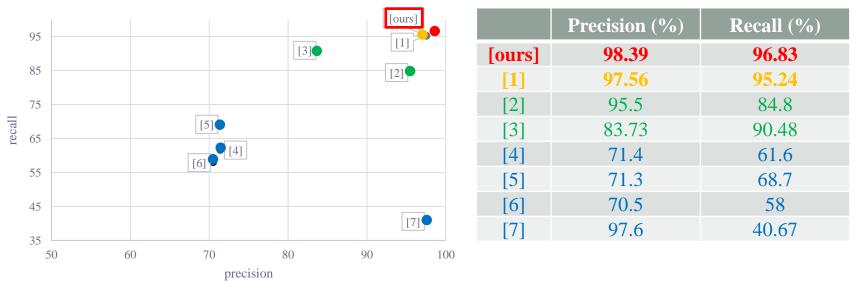
2. 제안하는 방법

License Plate Detection (CNN)

- 각 Region Proposal중 Best region 분 류
 높은 성능으로 검출

3. 성능 비교

Correct detection : Intersection over Union (IoU) ≥ 0.5



*Dataset : Caltech car_markus (http://www.vision.caltech.edu/Image_Datasets/cars_markus/cars_markus.tar)

[1] : character-based + CNN

- [2], [3] : character-based
- [4], [5], [6], [7] : edge-based

4. 결과

THE IMAGENET CHALLENGE

Backpack

Flute

Matchstick

Sea lion

Strawberry

Backpack

Traffic light

Bathing cap

Racket

Large-scale recognition

Large-scale recognition

Large Scale Visual Recognition Challenge (ILSVRC) 2010–2012

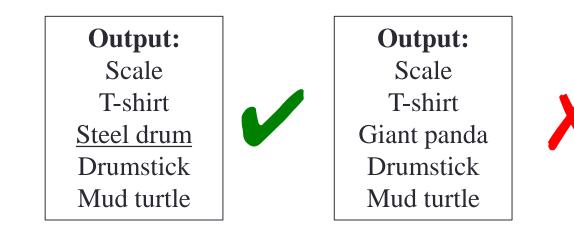
1000 object classes

1,431,167 images

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

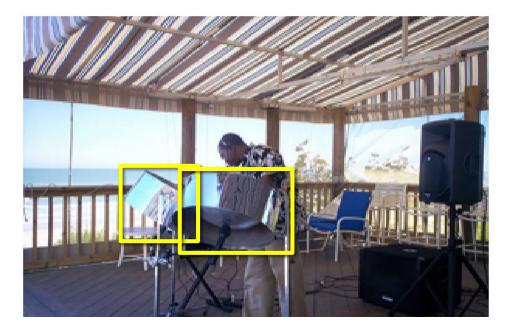
ILSVRC Task 1: Classification

ILSVRC Task 1: Classification

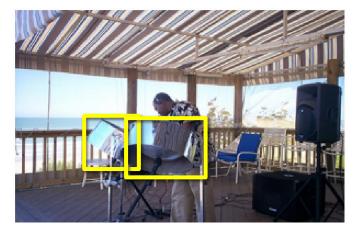


ILSVRC Task 1: Classification

Accuracy =
$$\frac{1}{N}$$
 $\sum_{\substack{N \\ images}}$ 1[correct on image i]



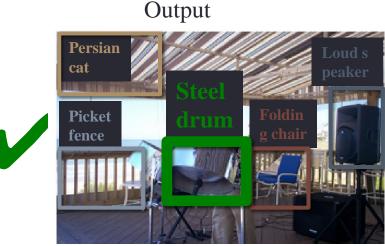
Steel drum



Output Persian cat Picket fence Foldin g chair

Steel drum

Output (bad localization)



Output (bad classification)

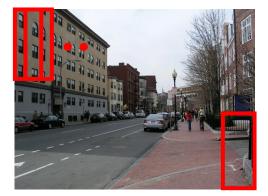
Accuracy =
$$\frac{1}{N}$$
 $\sum_{\substack{N-images}}$ 1[correct on image i]

Classification + Localization

Team name	Filename	Error (5 guesses)	Description	
SuperVision	test-rect-preds-144-cloc-141- 146.2009-131-137-145-	0.335463	Using extra training data for classification from ImageNet Fall 2011 release	
SuperVision	test-rect-preds-144-cloc-131- 137-145-135-145f.txt	0.341905	Using only supplied training data	
OXFORD_VGG	test_adhocmix_detection.txt	0.500342	Re-ranked DPM detection over Mixed selection from High-Level SVM scores and Baseline Scores, decision is performed by looking at the validation performance	
OXFORD_VGG	test_finecls_detection_bestbbo x.txt	0.50139	Re-ranked DPM detection over High-Level SVM Scores	
OXFORD_VGG	test_finecls_detection_firstbbox .txt	0.522189	Re-ranked DPM detection over High-Level SVM Scores - First bbox	

SLIDING WINDOW SCHEME

Localization prob. \rightarrow classification prob.



Each window is separately classified

