

INTRODUCTION

L
Search space

- Think about a tree structure

- Number of total possibilities: b¢

Depth

Breadth

L
Search space

\
\ SRR 0
») 2 . ¥
v\ \ 1 »
) \ | -
Sseiprsen a5 §® 0000

& o

Approximately b = 250, d =~ 150
— 250%°0 ~ 5 x 103%°
Chess : 35%% ~ 3 x 10123

BOARD GAME STRATEGY

L
Board Game Strategy

- To win the game, we only need to build a game tree

e
N N AN
AN IO DN AN DN AN

L
Board Game Strategy

- To win the game, we need to find p*(als)
- p*(als) : Optimal action value function
- Which action should | take?

L
Board Game Strategy

- To win the game, we need to find v* (s)
- v*(s) : Optimal Value Function

3 COMPONENTS OF
ALPHA GO

L
Monte Carlo Tree Search

P s
AN 2 NA N AN AN A YA N ANT AN AN AN AN AYNEAYNEY AN
NN NN NN IN NN NN NN NN NN NN NN NN NN N NN NN

’WK‘W‘NK‘K‘M%M@&MW’)\“}"/\“)\’)\"A‘X"/\“‘A‘\ AR

AAAMAMAMAMAMAA MAMAAM MAMAMAMAMAMAMAAMAMAAN
\AAﬁ

Reducing depth search with value network

s T—m
T T
7 T~ T~ T ~

Reducing breadth search with policy
hetwork

Est
o G
B~
£

MONTE CARLO TREE SEARCH

L
Monte Carlo Tree Search

- a method for finding optimal decisions in a given domain by
taking random samples in the decision space and building a
search tree according to the results

L
MCTS - overview

- Atree iIs built in an incremental and asymmetric manner

- For each iteration of the algorithm, a tree policy is used to find the most
urgent node of the current tree

- Exploration (look in areas that have not been well sampled yet) vs Exploitation
(look in areas which appear to be promising)

- A simulation is then run from the selected node and the search tree
updated according to the result

- the addition of a child node corresponding to the action taken from the selected
node (Moves are made during this simulation according to some default policy)

- an update of the statistics of its ancestors

One iteration of the general MCTS approach

/—> Selection —— Expansion —— Simulation —> Backpropagation \

Tree Defaul t

Policy Policy
\

- A /

L
General MCTS approach

- Selection: Starting at the root node, a child selection policy is recursively
applied to descend through the tree until the most urgent expandable node is
reached.

- Expansion: One (or more) child nodes are added to expand the tree,
according to the available actions.

- Simulation: A simulation is run from the new node(s) according to the
default policy to produce an outcome

- Backpropagation: The simulation result is “backed up” through the selected
nodes to update their statistics.

Algorithm 1 General MCTS approach.

function MCTSSEARCH(sg)
create root node vy with state s
while within computational budget do
vy + TREEPOLICY(vp)
A + DEFAULTPOLICY(s(v;))
BACKUP(v;, A)

return a(BESTCHILD(vy))

L
General MCTS approach

- Playout, rollout, simulation
- playing out the task to completion according to the default policy

- Four criteria for selecting the winning action
- Max child: Select the root child with the highest reward.
- Robust child: Select the most visited root child.

- Max-Robust child: Select the root child with both the highest visit count
and the highest reward. If none exist, then continue searching until an
acceptable visit count is achieved

- Secure child: Select the child which maximizes a lower confidence bound.

HOW TO DESIGN TREE POLICY?
MULTI-ARMED BANDIT

Multi—armed bandit

The K-armed bandit problem may be approached using a policy
that determines which bandit to play, based on past rewards.

UCT (Upper Confidence Bounds
for Trees) algorithm

Algorithm 2 The UCT algorithm.

function UCTSEARCH(s)
create root node v, with state sy
while within computational budget do
v; + TREEPOLICY(vg)
A « DEFAULTPOLICY(s(1;))
BACKUP(v;, A)

return a(BESTCHILD(vy,0))

function TREEPOLICY(v)
while v is nonterminal do
if v not fully expanded then
return EXPAND(v)

function DEFAULTPOLICY(s)
while s is non-terminal do
choose a € A(s) uniformly at random

else § f(S, a‘)
v ¢ BESTCHILD(v, Cp) return reward for state s
return v
function EXPAND(v) function BACKUPNEGAMAX(v, A)

choose a € untried actions from A(s(v)) while v is not null do
add a new child v to v N(v) < N(v)+1

with s(v/) = f(s(v), a) Qv) + Qv) + A

and a(v')=a A=A
return v’ v ¢« parent of v

function BESTCHILD(v, ¢)

Qv 2In N(v)
return arg max +eoy | ———~
v €children of v N (V') N(v')

D
Exploration vs Exploitation

function BESTCHILD(v, ¢)

Q(v") 2In N (v)
+ c\/ N @)

return argmax
v’ €children of v N(UI)

encourages the exploitation of encourages the exploration of less
higher-reward choices visited choices

ALPHAGO

L
3 key components in AlphaGo

- MCTS
- Policy network
- Value network

POLICY NETWORK

L
Policy network

- To imitate expert moves
- There are 192 possible actions (with different probabilities)

Policy network

Move probabilities

< L . > p,(als)
.\&\\ ‘

‘\..“\
I :
A

3

Position

3 Policy networks

- Supervised learning policy network
- Reinforcement learning policy network
- Roll-out policy network

Human expert Supervised Learning Reinforcement Learning
positions policy network policy network

’ m ‘sm Play "

Supervised learning of policy networks

- Policy network: 12 layer convolutional neural network
- Training data: 30M positions from human expert games (KGS 5+ dan)
- Training algorithm: maximize likelihood by stochastic gradient descent

dlogps(als)
do

- Training time: 4 weeks on 50 GPUs using Google Cloud
- Results: 57% accuracy on held out test data (state-of-the art was 44%)

0 X

Supervised learning of policy networks

19X19X48

Current Board

A

o

—Cl')

12 convolutional S
convolutional + =t Probability
rectifier layers g map
VS
Next Action
O
dlog p,(als) Played by

Training: Ao 9 Human Expert

Reinforcement learning of policy networks

- Policy network: 12 layer convolutional neural network
- Training data: games of self-play between policy network

- Training algorithm: maximize wins z by policy gradient
reinforcement learning

d log Pp (aglst) ,
dp

- Training time: 1 week on 50 GPUs using Google Cloud

- Results: 80% vs supervised learning. Raw network ~3 amateur
dan.

Ap X

L
Training the RL Policy Network P,

- Refined version of SL policy (P;)
- Initialize weightsto p = o

- {p~|p~ Is an old version of p}
By Vs Prpmy

S]_i}SQE}...{IT—}_IST:}Et:T(ST)E{:I:I}

T OlogP,(at|st)

D
Roll-out policy network

- Faster version of supervised learning policy network p(a|s)
with shall networks (3 ms— 2us)

VALUE NETWORK

L
Value network

Evaluation
L]

(s)

Position

Value network

Reinforcement Learning
policy network

kK

4

Self-play data Value network

Reinforcement learning of value
hetworks

- Value network: 12 layer convolutional neural network
- Training data: 30 million games of self-play
- Training algorithm: minimize MSE by stochastic gradient descent

A6 x av@ (s) (z — vg(5))

- Training time: 1 week on 50 GPUs using Google Cloud

- Results: First strong position evaluation function - previously thought
Impossible

Training the Value Network Vg

- Position evaluation
- Approximating optimal value function
- Input: state, output: probability to win

- Goal: minimize MSE

convolutional +

rectifier layers

19X19X48

94

scalar

TRAINING

D
Input Features

Extended Data Table 2 | Input features for neural networks

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty

Ones 1 A constant plane filled with 1

Turns since 8 How many turns since a move was played

Liberties 8 Number of liberties (empty adjacent points)

Capture size 8 How many opponent stones would be captured

Self-atari size 8 How many of own stones would be captured

Liberties after move 8 Number of liberties after this move is played

Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness 1 Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color 1 Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features).

Training the Deep Neural Networks

Summary: Training the Deep Neural
Networks

Rollout policy SL policy network RL policy network Value network
s
P, P, vy o
B
=
7]
E
m

Human expert positions Self-play positions

Figure: Neural Network Training Pipeline and Architecture

MCTS

L
Monte Carlo Tree Search

a Selection b Expansion

¥

Q+ulP) Lo\, Q+ulP) '\

B o

ETR 2 Q.+ uP P/ NP

3t (1)

N

Figure: Monte Carlo Tree Search in AlphaGo

Monte Carlo Tree Search: selection

- Each edge (s,a) stores:
- Q(s,a) - action value (average value of sub tree)
- N(s,a) — visit count
- P(s,a) — prior probability

p(s,a) = ps (als)

ar = argmaz (Q (S¢,a) + u (s¢,a))

a

\/Zb N, (s,b)
1+ N,(s,a)

u(s,a) = cpuct P(s,a)

Monte Carlo Tree Search: evaluation

- Leaf evaluation:
- Value network
- Random rollout

V (SL) = (1 —)\) Vo (SL) + Azg,

At ~ Pr (‘St)‘

ZT = 3

-1 (sT)

Evaluation

N Ve

Monte Carlo Tree Search: backup

Vg
Q
- s \ N
L . Wy (s,a) Wir(s,a) v ﬂ E m
Q(S,G) - (1 A) Ny (s,a) + AN-_.—(S,EI.) Q/ Q
Value network Roll-out , ﬁ . ﬁ
*

L
How to choose the next move?

- Maximum visit count
- Less sensitive to outliers than maximum action value

Training the Deep Neural Networks

a Value network b Tree evaluation from value net € Tree evaluation from rollouts
) {5 | = | i o E EEEEEEE

. ; oot e
s

—

&

Fs 1

oo le & o
| _?_ I

d Policy network e Percentage of simulations f Principal variation
|56 R EEE EE A O I I [|
I__C‘.__I.I.I I,J>__|_|_| RN I—#—{b——“ |
2 - -3-3 NI N | 1 T
o o [® L AR SR B
o edle

i
I

Figure 5 | How AlphaGo (black, to play) selected its move in an
informal game against Fan Hui. For each of the following statistics,
the location of the maximum value is indicated by an orange circle.

a, Evaluation of all successors s” of the root position s, using the value
network vy(s’); estimated winning percentages are shown for the top
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from
root position s; averaged over value network evaluations only (A=0).
¢, Action values Q(s, a), averaged over rollout evaluations only (A=1).

d, Move probabilities directly from the SL policy network, p (a|s);
reported as a percentage (if above 0.1%). e, Percentage frequency with
which actions were selected from the root during simulations. f, The
principal variation (path with maximum visit count) from AlphaGo’s
search tree. The moves are presented in a numbered sequence. AlphaGo
selected the move indicated by the red circle; Fan Hui responded with the
move indicated by the white square; in his post-game commentary he
preferred the move (labelled 1) predicted by AlphaGo.

Challenge Match

8- 15 March 2014

AlphaGo VS Experts

Summary

- A Go game at the highest level of human players is developed
based on a combination of deep neural networks and tree search.

- For the first time, effective move selection and position

evaluation functions for Go are developed based on deep neural
networks.

Google's Deep Mind Explained! - Self Learning A.l.

Olsdoz HE6tke 238

. \\\\ \

ColdFusion

BACKUPS

Tournament evaluation of AlphaGo

3,500+

3,000+

2,500+

2,000

1,500+

1,000+

5004

0_
Rollouts @ @ ® []
Value network @ e o @
Policy network @ e @ []

Figure: Performance of AlphaGo (on a single machine) for different
combinations of components

