
RECURRENT NEURAL
NETWORKS
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN offers a lot of flexibility

RNN offers a lot of flexibility

RNN offers a lot of flexibility

RNN offers a lot of flexibility

RNN offers a lot of flexibility

Sequential processing of fixed outputs

Recurrent Neural Network

Recurrent Neural Network

Recurrent Neural Network

Recurrent Neural Network

(Vanilla) Recurrent Neural Network

ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Character-level language model

• Vocabulary: [h,e,l,o]

• Training sequence: hello

ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

We want the green

numbers to be high and

red numbers to be low.

𝑊ℎℎ ∈ ℜ
3×3

𝑊𝑥ℎ ∈ ℜ
3×4

Simple RNN code

Simple RNN code

ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

Simple RNN code

Simple RNN code

Simple RNN code

Simple RNN code

Simple RNN code

Simple RNN code

ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

𝑝𝑡 =softmax(𝑦𝑡)

𝑙 ← 𝑙 − log 𝑝𝑡
⊤[0 … . 1 … .0]

Simple RNN code

RNN math

Simple RNN code

Training

Results

Generated C code

Searching for interpretable cells

Searching for interpretable cells

Searching for interpretable cells

Searching for interpretable cells

WHAT HAVE THE RNN
LEARNED?

Probability Model

• Given example sequences {𝑋𝑖}, let us find a probabilistic model

𝑝 𝑋 that maximizes 𝑖 𝑝(𝑋𝑖) .

• 𝑋𝑖 is a sequence 𝑋𝑖 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑇)

• For example,

• 𝑥1 = ℎ, 𝑥2 =e, 𝑥3 = 𝑙, 𝑥4 = 𝑙, 𝑥5 = 𝑜.

• 𝑥1 = "𝐼", 𝑥2 = "𝑎𝑚", 𝑥3 = "𝑎", 𝑥4 = "𝑠𝑡𝑢𝑑𝑒𝑛𝑡".

• For the model learning, we have to specify

• Parametric family (model selection)

• Learning criterion

• Parameter learning method

Our choice

• Parametric family: RNN

• Because we can decompose 𝑝(𝑋) = 𝑝(𝑥1, 𝑥2, … , 𝑥𝑇) into

• and RNN can handle this situation well.

→ 𝑔Θ ℎ1 , 𝑔Θ ℎ2 , ⋯ , 𝑔Θ ℎ𝑇−1

← 𝑥1, 𝑥2, ⋯ , 𝑥𝑇−1

Our choice

• Parametric family: RNN

• 𝑔Θ(ℎ𝑡−1) is a parametric model of 𝑝(𝑥𝑡|𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1).

• If we have an 𝑁-word dictionary, we can represent 𝑝 𝑥𝑡 𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1
with a 𝑁-dimensional vector (that sums to a unity and non-negative).

𝑝 𝑥𝑡 = 1
st word in the dictionary 𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1

𝑝 𝑥𝑡 = 2
nd word in the dictionary 𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1

𝑝 𝑥𝑡 = 3
rd word in the dictionary 𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1

𝑝 𝑥𝑡 = 4
th word in the dictionary 𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1

⋯

⋯

⋯

𝑝 𝑥𝑡 = N
thword in the dictionary 𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1

𝑔Θ ℎ𝑡−1 =

Our choice

• Learning criterion: log likelihood/cross entropy

• log 𝑝 𝑥1, 𝑥2, ⋯ , 𝑥𝑇 = 𝑡 log 𝑝(𝑥𝑡|𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1)

• 𝑡 log 𝑝(𝑥𝑡|𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1) → 𝑡 𝑔Θ ℎ𝑡−1
⊤

0
0
0
⋮
1
0
0

→cross entropy

• Learning method: SGD

𝑥𝑡’s element is 1.

Summary

• The above RNN model learns the (conditional) probability

model of a sequence by maximizing the log likelihood of

training sequences.

≃ 𝑝(𝑥𝑡|𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1)

APPLICATION:
IMAGE CAPTIONING

Image captioning

CNN RNN

Summary

• RNNs allow a lot of flexibility in architecture design

• Vanilla RNNs are simple but don’t work very well

• Backward flow of gradients in RNN can explode or vanish.

• Exploding is controlled with gradient clipping. Vanishing is

controlled with additive interactions (LSTM)

BACKUPS

Backpropagation

•

ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

𝑝𝑡 =softmax(𝑦𝑡)

𝑙 ← 𝑙 − log 𝑝𝑡
⊤[0 … . 1 … .0]

Backpropagation

• For example,

ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

𝑝𝑡 =softmax(𝑦𝑡)

𝑙 ← 𝑙 − log 𝑝𝑡
⊤[0 … . 1 … .0]

Backpropagation

• For example,

ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

𝑝𝑡 =softmax(𝑦𝑡)

𝑙 ← 𝑙 − log 𝑝𝑡
⊤[0 … . 1 … .0]

