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Sequential processing of fixed outputs
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(Vanilla) Recurrent Neural Network

ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦



Character-level language model

• Vocabulary: [h,e,l,o]

• Training sequence: hello

ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

We want the green 

numbers to be high and 

red numbers to be low.

𝑊ℎℎ ∈ ℜ
3×3

𝑊𝑥ℎ ∈ ℜ
3×4
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ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦
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Simple RNN code

ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

𝑝𝑡 =softmax(𝑦𝑡) 

𝑙 ← 𝑙 − log 𝑝𝑡
⊤[0 … . 1 … .0]



Simple RNN code



RNN math



Simple RNN code



Training



Results



Generated C code
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WHAT HAVE THE RNN 
LEARNED?



Probability Model

• Given example sequences {𝑋𝑖}, let us find a probabilistic model 

𝑝 𝑋 that maximizes  𝑖 𝑝(𝑋𝑖) .

• 𝑋𝑖 is a sequence 𝑋𝑖 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑇)

• For example,

• 𝑥1 = ℎ, 𝑥2 =e, 𝑥3 = 𝑙, 𝑥4 = 𝑙, 𝑥5 = 𝑜.

• 𝑥1 = "𝐼", 𝑥2 = "𝑎𝑚", 𝑥3 = "𝑎", 𝑥4 = "𝑠𝑡𝑢𝑑𝑒𝑛𝑡".

• For the model learning, we have to specify

• Parametric family (model selection)

• Learning criterion

• Parameter learning method 



Our choice

• Parametric family: RNN

• Because we can decompose 𝑝(𝑋) = 𝑝(𝑥1, 𝑥2, … , 𝑥𝑇) into

• and RNN can handle this situation well. 

→ 𝑔Θ ℎ1 , 𝑔Θ ℎ2 , ⋯ , 𝑔Θ ℎ𝑇−1

← 𝑥1, 𝑥2, ⋯ , 𝑥𝑇−1



Our choice

• Parametric family: RNN

• 𝑔Θ(ℎ𝑡−1) is a parametric model of 𝑝(𝑥𝑡|𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1).

• If  we have an 𝑁-word dictionary, we can represent 𝑝 𝑥𝑡 𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1
with a 𝑁-dimensional vector (that sums to a unity and non-negative).

𝑝 𝑥𝑡 = 1
st word in the dictionary 𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1

𝑝 𝑥𝑡 = 2
nd word in the dictionary 𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1

𝑝 𝑥𝑡 = 3
rd word in the dictionary 𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1

𝑝 𝑥𝑡 = 4
th word in the dictionary 𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1

⋯

⋯

⋯

𝑝 𝑥𝑡 = N
thword in the dictionary 𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1

𝑔Θ ℎ𝑡−1 =



Our choice

• Learning criterion: log likelihood/cross entropy

• log 𝑝 𝑥1, 𝑥2, ⋯ , 𝑥𝑇 =  𝑡 log 𝑝(𝑥𝑡|𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1)

•  𝑡 log 𝑝(𝑥𝑡|𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1) →  𝑡 𝑔Θ ℎ𝑡−1
⊤

0
0
0
⋮
1
0
0

→cross entropy

• Learning method: SGD

𝑥𝑡’s element is 1.



Summary

• The above RNN model learns the (conditional) probability 

model of a sequence by maximizing the log likelihood of 

training sequences. 

≃ 𝑝(𝑥𝑡|𝑥1, 𝑥2, ⋯ , 𝑥𝑡−1)



APPLICATION: 
IMAGE CAPTIONING



Image captioning



CNN RNN























Summary

• RNNs allow a lot of flexibility in architecture design

• Vanilla RNNs are simple but don’t work very well

• Backward flow of gradients in RNN can explode or vanish.

• Exploding is controlled with gradient clipping. Vanishing is 

controlled with additive interactions (LSTM)



BACKUPS



Backpropagation

•

ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

𝑝𝑡 =softmax(𝑦𝑡) 

𝑙 ← 𝑙 − log 𝑝𝑡
⊤[0 … . 1 … .0]







Backpropagation

• For example, 
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• For example, 

ℎ𝑡 = tanh (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦

𝑝𝑡 =softmax(𝑦𝑡) 

𝑙 ← 𝑙 − log 𝑝𝑡
⊤[0 … . 1 … .0]


