

THE IMAGENET LARGE SCALE VISUAL RECOGNITION CHALLENGE (ILSVRC)

Backpack

Flute

Matchstick

Sea lion

Strawberry

Backpack

Traffic light

Bathing cap

Racket

Large-scale recognition

Large-scale recognition

Large Scale Visual Recognition Challenge (ILSVRC) 2010–2012

1000 object classes 1,431,167 images

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

Variety of object classes in ILSVR С PASCAL **ILSVRC**

cock

birds

bottles

cars

pill bottle

ruffed grouse

beer bottle wine bottle water bottle pop bottle . . .

race car wagon

cab

partridge

ILSVRC Task 1: Classification

ILSVRC Task 1: Classification

ILSVRC Task 1: Classification

Accuracy =
$$\frac{1}{N}$$
 $\sum_{\substack{N \\ images}}$ 1[correct on image i]

Steel drum

Output Persian cat Steel drum Foldin g chair Control of the steel fence

Steel drum

Output (bad localization)

Output (bad classification)

Accuracy =
$$\frac{1}{N}$$
 $\sum_{\substack{N-images}}$ 1[correct on image i]

Classification: Comparison

Submission	Method	Error rate
SuperVision	Deep CNN	0.16422
ISI	FV: SIFT, LBP, GIST, CSIFT	0.26172
XRCE/INRIA	FV: SIFT and color 1M-dim features	0.27058
OXFORD_VGG	FV: SIFT and color 270K-dim features	0.27302

Classification + Localization

Team name	Filename	Error (5 guesses)	Description
SuperVision	test-rect-preds-144-cloc-141- 146.2009-131-137-145-	0.335463	Using extra training data for classification from ImageNet Fall 2011 release
SuperVision	test-rect-preds-144-cloc-131- 137-145-135-145f.txt	0.341905	Using only supplied training data
OXFORD_VGG	test_adhocmix_detection.txt	0.500342	Re-ranked DPM detection over Mixed selection from High-Level SVM scores and Baseline Scores, decision is performed by looking at the validation performance
OXFORD_VGG	test_finecls_detection_bestbbo x.txt	0.50139	Re-ranked DPM detection over High-Level SVM Scores
OXFORD_VGG	test_finecls_detection_firstbbox .txt	0.522189	Re-ranked DPM detection over High-Level SVM Scores - First bbox

SuperVision (SV)

Image classification: Deep convolutional neural networks

- 7 hidden "weight" layers, 650K neurons, 60M parameters, 630M conn ections
- Rectified Linear Units, max pooling, dropout trick
- Randomly extracted 224x224 patches for more data
- Trained with SGD on two GPUs for a week, fully supervised

Localization: Regression on (x,y,w,h)

http://image-net.org/challenges/LSVRC/2012/supervision.pdf

SuperVision

Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops

Object Recognition

ALEXNET

AlexNet

- AlexNet: won the 2012 ImageNet competition by making 40% 1 ess error than the next best competitor
 - It is composed of 5 convolutional layers
 - The input is a color RGB image
 - Computation is divided over 2 GPU architectures
 - Learning uses artificial data augmentation and connection drop-out to avoi d over-fitting

- The first layer applies 96 kernels of size 3x11x11
 - 34,848 parameters
 - Each kernel is applied with a stride of 4 pixels
 - (11x11x3)x(55x55x(48+48)) = 105,415,200 MACs

- The second layer applies 256 kernels of size 48x5x5
 - After applying a 3x3 max pooling with a stride of 2 pixels
 - 307,200 parameters
 - 256x(48x5x5)x(27x27)=223,948,800 MACs

- The third layer applies 384 kernels of size 256x3x3
 - After applying a 3x3 max pooling with a stride of 2 pixels
 - 884,736 parameters
 - 384x((128+128)x3x3)x(13x13)=149,520,384 MACs

- The fourth layer applies 384 kernels of size 192x3x3
 - Without pooling
 - 663,552 parameters
 - 384x(192x3x3)x(13x13)=112,140,288 MACs

- The fifth layer applies 256 kernels of size 192x3x3
 - Without pooling
 - 442,368 parameters
 - 256x(192x3x3)x(13x13)=74,760,192 MACs

- The output of the fifth layer (after a 3x3 max pooling with a stride of 2 pixels) is connected to a fully connected 3-layer perceptron
 - 1st layer
 - (2x6x6x128)x4096= 37,748,736connections
 - 2nd layer
 - 4096x4096= 16,777,216 connections
 - 3rd layer
 - 4096x1000= 4,096,000 connections

• 60 Million parameters, 832M MAC ops

BACKUPS

Complexity of a CNN classifier

- Apply the filter bank
 - Each input image of size MxM is convoluted with K kernels each of size NxN
 - KxMxMxNxN MAC operations
- Applying the non-linearity
 - usually done through look-up tables
- Performing pooling
 - Pooling aggregates the values of a VxV regions by applying an average or a max operation
 - The image is subsampled by applying the pooling every P pixels
 - (MxM)/(PxP) pooling operations over sets of size VxV
- Each fully connected layer of a perceptron involves LixLo MAC operations where L is the number of neurons (in input and output layers)