REINFORCEMENT
LEARNING

GPS, Optimal
SLAM control
Pedestrian
detection
(HOG+SVM)
Detection/ End-to-
Segmentat
) . end
ion/Classif i
. Learning
ication
Behavior
Dry/wet End-to- Prediction/
road :
e end Driver
classificati)) e .
on Learning | identificati
on

D
Planning

&

D
Planning

L=

-

Hope for Reinforcement Learening

- Supervised Learning
- Neural networks are great at memorization and not (yet) great at reasoning

- Reinforcement Learning

- Brute-force propagation of outcomes to knowledge about states and
actions.

- Hope for Deep Learning + Reinforcement Learning

- General purpose artificial intelligence through efficient generalizable
learning of the optimal thing to do given a formalized set of actions and
states

INTRODUCTION TO
REINFORCEMENT LEARNING

GPS, Optimal
SLAM control
Pedestrian
detection
(HOG+SVM)
Detection/ End-to-
Segmentat
) . end
ion/Classif i
. Learning
ication
Behavior
Dry/wet End-to- Prediction/
road :
e end Driver
classificati)) e .
on Learning | identificati
on

DeepMind's DQN playing Breakout

L
Deep Q-network

-
. T |
¥ LY
A e =
8] (o] [¢] [¢] [@]

How to train?

- In the supervised learning setting, we have to collect training
samples and train the network!

- Training samples: {(x;, y;)}

(x;,yi) = (.:)

Game state Joystick control

- In the reinforcement setting,
- 2?2

INTRODUCTION TO
REINFORCEMENT LEARNING

Reinforcement Learning

- Reinforcement learning is an area of machine learning
concerned with how software agents ought to take actions in an
environment so as to maximize some notion of cumulative

reward.

Atari Example

Reinforcement Learning

- Learning from interaction

- Goal-oriented learning
- Learning about, from, and while interacting with an external environment

Key Features of RL

- Learner is not told which actions to take

- Trial-and-Error search

- Possibility of delayed reward (sacrifice short-term gains for greater long-ter
m gains)

- The need to explore and exploit

Reinforcement Learning Setting

- S — set of states
- A — set of actions
- R : § X A — R —reward for given state and action.

__--

"'"[Agent

state | | reward action

E_‘ r.f-l-.f [E .
: Spas nvironment

Reinforcement Learning Terms

- Policy: a = m(s)
- Apolicy & is a mapping from each state, s € S, to an action a € A(s)

- (State-) Value function: V7 (s)
- the expected future reward given a current state s € S and policy

- Q-function (Action-value function): Q™ (s, a)
- the expected future reward given a state action pair, (s, a), and policy &

Reinforcement Learning Terms

If #(action) is small

Action Value Value Value
Value (for action 1) (for action 2)
NPect)\I/\I/(c:))r/k N\e/ta:/lvli)erk Q-Network v Q-Network

E

N

State Action

ﬂ

Value = expected reward

Deep Q-network

Network output:
expected future
reward when taking
each action

L i
- I 1
¥ kY|
Il e b -
8] (=] (»] (@] (@]

LEARNING METHOD:
DEEP Q-LEARNING

L
Deep Q-network

- From pixels to Actions: Human-level control through Deep Reinforcement Learning

Gonvglution Canvgluﬁon Fully covnnected Fully covnnected Crazy Climber
Damon
 Greai | B 4 No input Name This Gam
| =m
\
\ [>] Fong | SHEI
\ Space invaders | EE——
\ S Boam Ricer | iRIN—
Tutanknam | s I
Kung-Fu Master | TSRS
[~ | Froaway | s I
Time Pilot |
Enduro | el
i Fishing Derby | S+
Up and Down 7 Eral—
i ot T
/ HERO. l At human-level or above
/ Astarix Below human-level
/ 2 Battio Zone | kil
/ Wizard of Wor | erll—
/ il
1y (< 0] Bank Hoist 7 il
. — o L C River Raid | G-
Zaxxon sl
Amidar | -
Adien | -
Vanture | SR—
Seaquest | [lFass
Double Dunk
Bowling | Jtew
Ms. Pac-Man |}
Astercids || r=
Frostbite | |e%
Gravitar |fs%
Private Eye |}2%

Mantezuma's Revenge ||ox

T T T T T T T T 1
0 100 200 300 400 500 600 1,000 4,500%

L
How to train: Q-Learning

- Optimal Q-values should obey Bellman equation
- Bellman equation for Q* (s, a)

£ Q'(s,a) = T, PL [RE, +y max Q' (s",a))

- Q' (s,a;w) = X P [Rgs, + y max Q*(s’,a’;w)] =r+ y max Q*(s',a’;w)

- Treat right hand side r + y max Q*(s’,a’; w) as a target
a’
- Minimize MSE loss by stochastic gradient descent

2
[= (r+7 max Q(s', &', w) — Q(s,a,w))

» Converges to Q* using table lookup representation
» But diverges using neural networks due to:

» Correlations between samples
» Non-stationary targets

LEARNING METHOD:
POLICY GRADIENT

Policy Network

raw pixels hidden layer

‘\\,/// probability of
g.}tfg;’%; @ moving UP
b":f‘?AV‘A

=N

Policy Gradient Method

- Random Initialization
- Repeat
- Generate samples (run the policy)

- Policy improvement
- Reward-weighted gradient learning (similar to the supervised learning)

upP DOWN UP up DOWN DOWN DOWN upP WIN
DOWN o UP uP DOWN uP uP LOSE
uP uP DOWN o DOWN_ DOWN_ o DOWN_ o UP LOSE

o LNl .o P, glOW g W o o WIN

each arrow is a transition, annotated with the action that was sampled. In this case we won 2 games and lost 2 games. With
Policy Gradients we would take the two games we won and slightly encourage every single action we made in that episode.
Conversely, we would also take the two games we lost and slightly discourage every single action we made in that episode.

Cartoon diagram of 4 games. Each black circle is some game state (three example states are visualized on the bottom), and

40 (out of 200) neurons

CASE STUDY: ALPHAGO

L
Search space

\
\ SRR 0
») 2 . ¥
v\ \ 1 »
) \ | -
Sseiprsen a5 §® 0000

& o

Approximately b = 250, d =~ 150
— 250%°0 ~ 5 x 103%°
Chess : 358% ~ 3 x 10123

GAME STRATEGY

L
Game Strategy

- To win the game, we only need to build a game tree

e
N N AN
AN IO DN AN DN AN

L
Game Strategy

- To win the game, we need to find p*(als)
- p*(als) : Optimal action value function
- Which action should | take?

L
Game Strategy

- To win the game, we need to find v* (s)
- v*(s) : Optimal Value Function

THREE COMPONENTS
OF ALPHAGO

L
Monte Carlo Tree Search

P s
AN 2 NA N AN AN A YA N ANT AN AN AN AN AYNEAYNEY AN
NN NN NN IN NN NN NN NN NN NN NN NN NN N NN NN

’WK‘W‘NK‘K‘M%M@&MW’)\“}"/\“)\’)\"A‘X"/\“‘A‘\ AR

AAAMAMAMAMAMAA MAMAAM MAMAMAMAMAMAMAAMAMAAN
\AAﬁ

Reducing depth search with value network

s
T T
T~ ~ T ~ ™~

Reducing breadth search with policy
hetwork

Est
o G
B~
£

MONTE CARLO TREE SEARCH

L
Monte Carlo Tree Search

- a method for finding optimal decisions in a given domain by
taking random samples in the decision space and building a
search tree according to the results

One iteration of the general MCTS approach

/—> Selection —— Expansion —— Simulation —> Backpropagation \

Tree Defaul t

Policy Policy
\

- A /

L
General MCTS approach

- Selection: Starting at the root node, a child selection policy is recursively
applied to descend through the tree until the most urgent expandable node is
reached.

- Expansion: One (or more) child nodes are added to expand the tree,
according to the available actions.

- Simulation: A simulation is run from the new node(s) according to the
default policy to produce an outcome

- Backpropagation: The simulation result is “backed up” through the selected
nodes to update their statistics.

Algorithm 1 General MCTS approach.

function MCTSSEARCH(sg)
create root node vy with state s
while within computational budget do
vy + TREEPOLICY(vp)
A + DEFAULTPOLICY(s(v;))
BACKUP(v;, A)

return a(BESTCHILD(vy))

L
General MCTS approach

- Playout, rollout, simulation
- playing out the task to completion according to the default policy

- Four criteria for selecting the winning action
- Max child: Select the root child with the highest reward.
- Robust child: Select the most visited root child.

- Max-Robust child: Select the root child with both the highest visit count
and the highest reward. If none exist, then continue searching until an
acceptable visit count is achieved

- Secure child: Select the child which maximizes a lower confidence bound.

HOW TO DESIGN TREE POLICY?
MULTI-ARMED BANDIT

Multi—armed bandit

The K-armed bandit problem may be approached using a policy
that determines which bandit to play, based on past rewards.

UCT (Upper Confidence Bounds for Trees) algorithm

Algorithm 2 The UCT algorithm.

function UCTSEARCH(s)
create root node v, with state sy
while within computational budget do
v; + TREEPOLICY(vg)
A « DEFAULTPOLICY(s(1;))
BACKUP(v;, A)

return a(BESTCHILD(vy,0))

function TREEPOLICY(v)
while v is nonterminal do
if v not fully expanded then
return EXPAND(v)

function DEFAULTPOLICY(s)
while s is non-terminal do
choose a € A(s) uniformly at random

else s ¢ f(s,a)
v + BESTCHILD(v, C'p) return reward for state s
return v
function EXPAND(v) function BACKUPNEGAMAX(v, A)

choose a € untried actions from A(s(v)) while v is not null do
add a new child v’ to v N(v) < N(v)+1

with s(v/) = f(s(v), a) Qv) + Qv) + A

and a(v')=a A=A
return v’ v ¢« parent of v

function BESTCHILD(v, ¢)

Qv") 2In N(v)
return argmax =~ ey ———
u'EchildrenofuN(U) N(U)

D
Exploration vs Exploitation

function BESTCHILD(v, ¢)

Q(v") 2In N (v)
+ c\/ N @)

return argmax
v’ €children of v N(UI)

encourages the exploitation of encourages the exploration of less
higher-reward choices visited choices

ALPHAGO

L
3 key components in AlphaGo

- MCTS
- Policy network
- Value network

POLICY NETWORK

L
Policy network

- To imitate expert moves
- There are 192 possible actions (with different probabilities)

Policy network

Move probabilities

< L . > p,(als)
.\&\\ ‘

‘\..“\
I :
A

3

Position

3 Policy networks

- Supervised learning policy network
- Reinforcement learning policy network
- Roll-out policy network

Human expert Supervised Learning Reinforcement Learning
positions policy network policy network

’ m ‘sm Play "

Supervised learning of policy networks

- Policy network: 12 layer convolutional neural network
- Training data: 30M positions from human expert games (KGS 5+ dan)
- Training algorithm: maximize likelihood by stochastic gradient descent

dlogps(als)
do

- Training time: 4 weeks on 50 GPUs using Google Cloud
- Results: 57% accuracy on held out test data (state-of-the art was 44%)

0 X

Supervised learning of policy networks

19X19X48

Current Board

A

o

—Cl')

12 convolutional S
convolutional + =t Probability
rectifier layers = map
X
VS
Next Action
O
dlog p,(als) Played by

Training: Ao 9 Human Expert

Reinforcement learning of policy networks

- Policy network: 12 layer convolutional neural network
- Training data: games of self-play between policy network

- Training algorithm: maximize wins z by policy gradient
reinforcement learning

d log Pp (aglst) ,
dp

- Training time: 1 week on 50 GPUs using Google Cloud

- Results: 80% vs supervised learning. Raw network ~3 amateur
dan.

Ap X

L
Training the RL Policy Network P,

- Refined version of SL policy (P,)
- Initialize weightstop = o

- {p~|p~ Is an old version of p}
By Vs Prpmy

S]_i}SQE}...{IT—}_IST:}Et:T(ST)E{:I:I}

T OlogP,(at|st)

D
Roll-out policy network

- Faster version of supervised learning policy network p(a|s)
with shall networks (3 ms— 2us)

VALUE NETWORK

L
Value network

Evaluation
L]

(s)

Position

Value network

Reinforcement Learning
policy network

kK

4

Self-play data Value network

Reinforcement learning of value
networks

- Value network: 12 layer convolutional neural network
- Training data: 30 million games of self-play
- Training algorithm: minimize MSE by stochastic gradient descent

A6 x av@ (s) (z — vg(5))

- Training time: 1 week on 50 GPUs using Google Cloud

- Results: First strong position evaluation function - previously thought
Impossible

Training the Value Network Vg

- Position evaluation
- Approximating optimal value function
- Input: state, output: probability to win

- Goal: minimize MSE

convolutional +

rectifier layers

19X19X48

94

scalar

TRAINING

D
Input Features

Extended Data Table 2 | Input features for neural networks

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty

Ones 1 A constant plane filled with 1

Turns since 8 How many turns since a move was played

Liberties 8 Number of liberties (empty adjacent points)

Capture size 8 How many opponent stones would be captured

Self-atari size 8 How many of own stones would be captured

Liberties after move 8 Number of liberties after this move is played

Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness 1 Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color 1 Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features).

Training the Deep Neural Networks

Summary: Training the Deep Neural
Networks

Rollout policy SL policy network RL policy network Value network
s
P, P, vy o
B
=
7]
E
m

Human expert positions Self-play positions

Figure: Neural Network Training Pipeline and Architecture

MCTS

L
Monte Carlo Tree Search

a Selection b Expansion

¥

Q+ulP) Lo\, Q+ulP) '\

B o

ETR 2 Q.+ uP P/ NP

3t (1)

N

Figure: Monte Carlo Tree Search in AlphaGo

L
Edge storing statistics

- {P(s,a),N,(s,a),N,(s,a), W,(s,a), W,.(s,a),Q(s,a)}
- P(s,a): prior probability
- N,(s,a): # of leaf evaluation

- W, (s, a): Monte Carlo estimated action value accumulated over
Nv (S) a)

+ N, (s,a): # of roll-out evaluation

- W,.(s,a): Monte Carlo estimated action value accumulated over
NT (Sr a)

Monte Carlo Tree Search: selection

- Each edge (s,a) stores:
- Q(s,a) - action value (average value of sub tree)
- N(s,a) — visit count
- P(s,a) — prior probability

p(s,a) = ps (als)

ar = argmaz (Q (S¢,a) + u (s¢,a))

a

\/Zb N, (s,b)
1+ N,(s,a)

u(s,a) = cpuct P(s,a)

Monte Carlo Tree Search: evaluation

- Leaf evaluation:
- Value network
- Random rollout

V (SL) = (1 —)\) Vo (SL) + Azg,

At ~ Pr (‘St)‘

ZT = 3

-1 (sT)

Evaluation

N Ve

Monte Carlo Tree Search: backup

Vg
Q
- s \ N
L . Wy (s,a) Wir(s,a) v ﬂ E m
Q(S,G) - (1 A) Ny (s,a) + AN-_.—(S,EI.) Q/ Q
Value network Roll-out , ﬁ . ﬁ
*

L
How to choose the next move?

- Maximum visit count
- Less sensitive to outliers than maximum action value

Training the Deep Neural Networks

a Value network b Tree evaluation from value net € Tree evaluation from rollouts
) {5 | = | i o E EEEEEEE

. ; oot e
s

—

&

Fs 1

oo le & o
| _?_ I

d Policy network e Percentage of simulations f Principal variation
|56 R EEE EE A O I I [|
I__C‘.__I.I.I I,J>__|_|_| RN I—#—{b——“ |
2 - -3-3 NI N | 1 T
o o [® L AR SR B
o edle

i
I

Figure 5 | How AlphaGo (black, to play) selected its move in an
informal game against Fan Hui. For each of the following statistics,
the location of the maximum value is indicated by an orange circle.

a, Evaluation of all successors s” of the root position s, using the value
network vy(s’); estimated winning percentages are shown for the top
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from
root position s; averaged over value network evaluations only (A=0).
¢, Action values Q(s, a), averaged over rollout evaluations only (A=1).

d, Move probabilities directly from the SL policy network, p (a|s);
reported as a percentage (if above 0.1%). e, Percentage frequency with
which actions were selected from the root during simulations. f, The
principal variation (path with maximum visit count) from AlphaGo’s
search tree. The moves are presented in a numbered sequence. AlphaGo
selected the move indicated by the red circle; Fan Hui responded with the
move indicated by the white square; in his post-game commentary he
preferred the move (labelled 1) predicted by AlphaGo.

Challenge Match

8- 15 March 2014

AlphaGo VS Experts

