
REINFORCEMENT
LEARNING

Tasks

ADAS

Self Driving

Localizati

on
Perception

Planning/

Control

Driver

state

Vehicle

Diagnosis

Smart

factory

M
eth

o
d

s

T
rad

itio
n

al

Non-machine Learning
GPS,

SLAM

Optimal

control

M
ach

in
e-L

earn
in

g
b

ased
 m

eth
o

d

S
u

p
erv

ised

SVM

MLP

Pedestrian

detection
(HOG+SVM)

D
eep

-L
earn

in
g

 b
ased

CNN

Detection/

Segmentat

ion/Classif

ication

End-to-

end

Learning

RNN

(LSTM)

Dry/wet

road

classificati

on

End-to-

end

Learning

Behavior

Prediction/

Driver

identificati

on

*

DNN * *

Reinforcement *

Unsupervised *

Planning

Planning

Hope for Reinforcement Learening

• Supervised Learning

• Neural networks are great at memorization and not (yet) great at reasoning

• Reinforcement Learning

• Brute-force propagation of outcomes to knowledge about states and

actions.

• Hope for Deep Learning + Reinforcement Learning

• General purpose artificial intelligence through efficient generalizable

learning of the optimal thing to do given a formalized set of actions and

states

INTRODUCTION TO
REINFORCEMENT LEARNING

Tasks

ADAS

Self Driving

Localizati

on
Perception

Planning/

Control

Driver

state

Vehicle

Diagnosis

Smart

factory

M
eth

o
d

s

T
rad

itio
n

al

Non-machine Learning
GPS,

SLAM

Optimal

control

M
ach

in
e-L

earn
in

g
b

ased
 m

eth
o

d

S
u

p
erv

ised

SVM

MLP

Pedestrian

detection
(HOG+SVM)

D
eep

-L
earn

in
g

 b
ased

CNN

Detection/

Segmentat

ion/Classif

ication

End-to-

end

Learning

RNN

(LSTM)

Dry/wet

road

classificati

on

End-to-

end

Learning

Behavior

Prediction/

Driver

identificati

on

*

DNN * *

Reinforcement *

Unsupervised *

DeepMind's DQN playing Breakout

Deep Q-network

How to train?

• In the supervised learning setting, we have to collect training
samples and train the network!

• Training samples: 𝑥𝑖 , 𝑦𝑖

• In the reinforcement setting,

• ???

𝑥𝑖 , 𝑦𝑖 = (,)

Game state Joystick control

INTRODUCTION TO
REINFORCEMENT LEARNING

Reinforcement Learning

• Reinforcement learning is an area of machine learning

concerned with how software agents ought to take actions in an

environment so as to maximize some notion of cumulative

reward.

Atari Example

Reinforcement Learning

• Learning from interaction

• Goal-oriented learning

• Learning about, from, and while interacting with an external environment

Key Features of RL

• Learner is not told which actions to take

• Trial-and-Error search

• Possibility of delayed reward (sacrifice short-term gains for greater long-ter

m gains)

• The need to explore and exploit

Reinforcement Learning Setting

• 𝑆 – set of states

• 𝐴 – set of actions

• 𝑅 ∶ 𝑆 × 𝐴 → 𝑅 – reward for given state and action.

Reinforcement Learning Terms

• Policy: 𝑎 = 𝜋(𝑠)
• A policy 𝜋 is a mapping from each state, 𝑠 ∈ 𝑆, to an action 𝑎 ∈ 𝐴(𝑠)

• (State-) Value function: 𝑉𝜋 𝑠
• the expected future reward given a current state 𝑠 ∈ 𝑆 and policy 𝜋

• Q-function (Action-value function): 𝑄𝜋 𝑠, 𝑎
• the expected future reward given a state action pair, (𝑠, 𝑎), and policy 𝜋

Reinforcement Learning Terms

Action

Policy

Network

Value

Value

Network

Value = expected reward

Q-Network Q-Network

Value
Value

(for action 1)
….

≃

Value
(for action 2)

If #(𝑎𝑐𝑡𝑖𝑜𝑛) is small

Deep Q-network
Network output:

expected future

reward when taking

each action

LEARNING METHOD:
DEEP Q-LEARNING

Deep Q-network
• From pixels to Actions: Human-level control through Deep Reinforcement Learning

How to train: Q-Learning

• Optimal Q-values should obey Bellman equation

• Bellman equation for 𝑄∗ 𝑠, 𝑎

• 𝑄∗ 𝑠, 𝑎 = 𝑠′𝑃𝑠𝑠′
𝑎 𝑅𝑠𝑠′

𝑎 + 𝛾max
𝑎′

𝑄∗ 𝑠′, 𝑎′

• 𝑄∗ 𝑠, 𝑎; 𝑤 = 𝑠′𝑃𝑠𝑠′
𝑎 𝑅𝑠𝑠′

𝑎 + 𝛾max
𝑎′

𝑄∗ 𝑠′, 𝑎′; 𝑤 = 𝑟 + 𝛾max
𝑎′

𝑄∗ 𝑠′, 𝑎′; 𝑤

• Treat right hand side 𝑟 + 𝛾max
𝑎′

𝑄∗ 𝑠′, 𝑎′; 𝑤 as a target

• Minimize MSE loss by stochastic gradient descent

LEARNING METHOD:
POLICY GRADIENT

Policy Network

Policy Gradient Method

• Random Initialization

• Repeat

• Generate samples (run the policy)

• Policy improvement

• Reward-weighted gradient learning (similar to the supervised learning)

40 (out of 200) neurons

CASE STUDY: ALPHAGO

바둑

Search space

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑙𝑦 𝑏 ≈ 250, 𝑑 ≈ 150
→ 250150 ≈ 5 × 10359

𝐶ℎ𝑒𝑠𝑠 ∶ 3580 ≈ 3 × 10123

GAME STRATEGY

Game Strategy

• To win the game, we only need to build a game tree

Game Strategy

• To win the game, we need to find 𝑝∗ 𝑎|𝑠
• 𝑝∗ 𝑎|𝑠 : Optimal action value function

• Which action should I take?

Game Strategy

• To win the game, we need to find 𝑣∗ (𝑠)
• 𝑣∗ 𝑠 : Optimal Value Function

THREE COMPONENTS
OF ALPHAGO

Monte Carlo Tree Search

Reducing depth search with value network

Reducing breadth search with policy
network

MONTE CARLO TREE SEARCH

Monte Carlo Tree Search

• a method for finding optimal decisions in a given domain by

taking random samples in the decision space and building a

search tree according to the results

One iteration of the general MCTS approach

General MCTS approach

• Selection: Starting at the root node, a child selection policy is recursively

applied to descend through the tree until the most urgent expandable node is

reached.

• Expansion: One (or more) child nodes are added to expand the tree,

according to the available actions.

• Simulation: A simulation is run from the new node(s) according to the

default policy to produce an outcome

• Backpropagation: The simulation result is “backed up” through the selected

nodes to update their statistics.

reward

action

General MCTS approach

• Playout, rollout, simulation

• playing out the task to completion according to the default policy

• Four criteria for selecting the winning action

• Max child: Select the root child with the highest reward.

• Robust child: Select the most visited root child.

• Max-Robust child: Select the root child with both the highest visit count

and the highest reward. If none exist, then continue searching until an

acceptable visit count is achieved

• Secure child: Select the child which maximizes a lower confidence bound.

HOW TO DESIGN TREE POLICY?
MULTI-ARMED BANDIT

Multi-armed bandit

• The K-armed bandit problem may be approached using a policy

that determines which bandit to play, based on past rewards.

UCT (Upper Confidence Bounds for Trees) algorithm

Exploration vs Exploitation

encourages the exploitation of

higher-reward choices

encourages the exploration of less

visited choices

ALPHAGO

3 key components in AlphaGo

• MCTS

• Policy network

• Value network

POLICY NETWORK

Policy network

• To imitate expert moves

• There are 192 possible actions (with different probabilities)

Policy network

3 Policy networks

• Supervised learning policy network

• Reinforcement learning policy network

• Roll-out policy network

Supervised learning of policy networks

• Policy network: 12 layer convolutional neural network

• Training data: 30M positions from human expert games (KGS 5+ dan)

• Training algorithm: maximize likelihood by stochastic gradient descent

• Training time: 4 weeks on 50 GPUs using Google Cloud

• Results: 57% accuracy on held out test data (state-of-the art was 44%)

Δ𝜎 ∝
𝜕 log 𝑝𝜎(𝑎|𝑠)

𝜕𝜎

Supervised learning of policy networks

Played by

Human Expert

1
9

X
1

9
X

4
8

12 convolutional +

rectifier layers

S
o

ftm
ax

Probability

map

vs

Reinforcement learning of policy networks

• Policy network: 12 layer convolutional neural network

• Training data: games of self-play between policy network

• Training algorithm: maximize wins z by policy gradient

reinforcement learning

• Training time: 1 week on 50 GPUs using Google Cloud

• Results: 80% vs supervised learning. Raw network ~3 amateur

dan.

Δ𝜌 ∝
𝜕 log 𝑝𝜌(𝑎𝑡|𝑠𝑡)

𝜕𝜌
𝑧

Training the RL Policy Network 𝑷𝛒

• Refined version of SL policy 𝑃𝜎
• Initialize weights to 𝜌 = 𝜎

• {𝜌−|𝜌− is an old version of 𝜌}

• 𝑃𝜌 vs 𝑃 𝜌−

Roll-out policy network

• Faster version of supervised learning policy network 𝑝(𝑎|𝑠)
with shall networks (3 ms→ 2us)

VALUE NETWORK

Value network

Value network

Reinforcement learning of value
networks
• Value network: 12 layer convolutional neural network

• Training data: 30 million games of self-play

• Training algorithm: minimize MSE by stochastic gradient descent

• Training time: 1 week on 50 GPUs using Google Cloud

• Results: First strong position evaluation function - previously thought

impossible

Δ𝜃 ∝
𝜕𝑣𝜃 𝑠

𝜕𝜃
(𝑧 − 𝑣𝜃 𝑠)

Training the Value Network 𝑽𝛉

• Position evaluation

• Approximating optimal value function

• Input: state, output: probability to win

• Goal: minimize MSE

1
9
X

1
9
X

4
8

convolutional +

rectifier layers

fc scalar

TRAINING

Input Features

Training the Deep Neural Networks

×

Summary: Training the Deep Neural
Networks

MCTS

Monte Carlo Tree Search

Edge storing statistics

• {𝑃 𝑠, 𝑎 , 𝑁𝑣 𝑠, 𝑎 , 𝑁𝑟 𝑠, 𝑎 ,𝑊𝑣 𝑠, 𝑎 ,𝑊𝑟 𝑠, 𝑎 , 𝑄(𝑠, 𝑎)}
• 𝑃 𝑠, 𝑎 : prior probability

• 𝑁𝑣 𝑠, 𝑎 : # of leaf evaluation

• 𝑊𝑣 𝑠, 𝑎 : Monte Carlo estimated action value accumulated over
𝑁𝑣 𝑠, 𝑎

• 𝑁𝑟 𝑠, 𝑎 : # of roll-out evaluation

• 𝑊𝑟 𝑠, 𝑎 : Monte Carlo estimated action value accumulated over
𝑁𝑟 𝑠, 𝑎

Monte Carlo Tree Search: selection

• Each edge (s,a) stores:

• 𝑄(𝑠, 𝑎) - action value (average value of sub tree)

• 𝑁(𝑠, 𝑎) – visit count

• 𝑃(𝑠, 𝑎) – prior probability

Monte Carlo Tree Search: evaluation

• Leaf evaluation:

• Value network

• Random rollout

Monte Carlo Tree Search: backup

Value network Roll-out

How to choose the next move?

• Maximum visit count

• Less sensitive to outliers than maximum action value

Training the Deep Neural Networks

×

AlphaGo VS Experts

4:1

