CONCLUSIONS




We reviewed machine learning methods
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Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]
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Deep Learning?

- Ranzato’s definition

- a method which makes predictions by using a sequence of non-linear
processing stages. The resulting intermediate representations can be
Interpreted as feature hierarchies and the whole system is jointly learned
from data. Some deep learning methods are probabilistic, others are loss-
based, some are supervised, other unsupervised...
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WORD EMBEDDING

http://colah.github.io/posts/2014-07-NLP-RNNs-
Representations/



Word representation

Traditional method Word embeddings

- Uses one hot encoding - Stores each word in as a
point in space, where it Is
represented by a vector of
fixed number of dimensions
(generally 300)

- Each word in the vocabulary
IS represented by one bit
position in a huge vector.

- Unsupervised, built just by

- Context information is not .
reading huge corpus

utilized




Examples

Male-Female

walked

1 swam
©)

walking ,‘

Verb tense

Demo (http://w.elnn.kr/search/)

Spain \
Italy \Madrid
Rome

Germany “‘-—-—--.._.__.____.
Berlin
Turkey \
Ankara

Russia
Moscow
Canada Ottawa
Japan rokyo
Vietnam Hanoi
China Beijing
Country-Capital


http://w.elnn.kr/search/

L
Word Embedding

- A word embedding W:words—R" is a paramaterized function
mapping words in some language to high-dimensional vectors
(perhaps 200 to 500 dimensions). For example, we might find:

W(“cat”) = (0.2, -0.4, 0.7, ...)

W (“mat”) = (0.0, 0.6, -0.1, ...)

- Typically, the function is a lookup table, parameterized by a
matrix, 8, with a row for each word: Wy (w,,) = 6.,



Word Embedding Learning

- W is initialized to have random vectors for each word. It learns
to have meaningful vectors in order to perform some task.

- Train a network for is predicting whether a 5-gram (sequence of
five words) 1s ‘valid.’

- “cat sat on the mat” vs “cat sat song the mat”
- 5-gram -> (W, R) -> ‘valid’ vs ‘broken’

g

g

E
R(W(“cat’), W(%sat’), W(*or'), W(*“the'), W(“mat’)) =1 Modular Network to
R(W (“cat’), W(“sat’), W (“song’), W(“thd’), W (*mat’)) = 0 determine if a 5-gram is

‘valid” (From Bottou

(2011))



L
Word Embedding Learning

- In order to predict these values accurately, the network needs to
learn good parameters for both W and R.



t-SNE Visualization
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-SNE Visualization
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What words have embeddings closest to
a given word?

FRANCE JESUS XBOX REDDISH  SCRATCHED  MEGABITS
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S

GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA  PSNUMBER  GREYISH SCRAPED KBIT/S

NORWAY VISHNU HD GRAYISH SCREWED  MEGAHERTZ
EUROPE ANANDA  DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND  GRACE CAPCOM YELLOWISH RIPPED AMPERES

What words have embeddings closest to a given word? From Collobert
et al (2011)



Gender dimension?

- Word embeddings exhibit an even more remarkable property:
analogies between words seem to be encoded in the difference
vectors between words. For example, there seems to be a
constant male-female difference vector:

W(“woman’) — W(“man’) ~ W (“aunt’) — W (“unclée’)
W (“woman’) — W (“man’) W (“queen’) — W (“king’)

2

- We say with hindsight, “the word embedding will learn to
encode gender in a consistent way. In fact, there’s probably a
gender dimension. Same thing for singular vs plural.



Examples

WOMAN

/ AUNT QUEENS
MAN /

UNCLE KINGS \
QUEEN \ QUEEN

KING KING

(Mikolov et al.,, NAACL HLT, 2013)



Much more sophisticated relationships

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii

Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

Messi: midfielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo

Germany: bratwurst

Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy

France: tapas

Picasso: painter

Koizumi: Japan

uranium: plutonium

Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza




Summary

- All of these properties of W are side effects.
- We didn’t try to have similar words be close together.
- We didn’t try to have analogies encoded with difference vectors.

- All we tried to do was perform a simple task, like predicting whether a
sentence was valid. These properties more or less popped out of the
optimization process.

- This seems to be a great strength of neural networks
- They learn better ways to represent data, automatically.

- Representing data well, in turn, seems to be essential to success at many
machine learning problems.

- Word embeddings are just a particularly striking example of learning a
representation.



