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Conventional approach 

• Image classification

“Motocycle”
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Why is this hard?
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Feature representation
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Classification

Algorithm
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Example of Feature Representation

• But, … we don’t have a handlebars detector. So, researchers try to hand-

design features to capture various statistical properties of the image
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Feature representation
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Classification

Algorithm



MNIST EXAMPLE



MNIST dataset

• Simple computer vision dataset

• 28x28 pixel images of handwritten digits

• 28x28 array or 784 dimensional vector



Dimension Reduction - 1

• Dots are colored based on which class of digit the data point 

belongs to.



Dimension Reduction – 2 (PCA)

• Filter



Dimension Reduction – 2 (PCA)



Dimension Reduction – 2 (PCA)



Visualization MNIST with t-SNE



FEATURE EXAMPLES



Computer vision features
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Audio features



Natural Language Processing Features



“SIMPLE” TRAINABLE 
CLASSIFIERS 



• Traditional Pattern Recognition

• Fixed/engineered features (or fixed kernel) + trainable classifier

Models of pattern recognition



Deep LearningA family of methods that uses deep architectures 

to learn high-level feature representations



LINEAR PERCEPTRON



뉴런: 신경망의기본단위



Basic model

• The first learning machine: the Perceptron (built in 1960)

• The perceptron was a linear classifier on top of a simple feature 

extractor

• The vast majority of practical applications of machine learning 

used linear classifiers. 

𝑦 = sign(𝑊𝑇𝐹 𝑋 + 𝑏)



Simple Linear Perceptron

• The goal: Find the best line (or hyper-plane) to separate the training 
data. How to formalize it?

• In two dimensions, the equation of the line is given by:

• 𝑤1𝑥 + 𝑤2𝑦 = 𝑏

• A better notation for n dimensions: treat each data point and the coefficients as 
vectors. Then the equation is given by:

• 𝑤𝑇𝑥 = 𝑏

Class (+1)Class (-1)



Simple Linear Perceptron

• The Simple Linear Perceptron is a classifier as shown in the 

picture

• Points that fall on the right are classified as “+1”

• Points that fall on the left are classified as “-1”

• Therefore: using the training set, find a hyperplane (line) so that

• 𝑤𝑇𝑥 > 𝑏 for positive samples

• 𝑤𝑇𝑥 < 𝑏 for negative samples

Class (+1)Class (-1)



예시: 연어와농어의구별



예시: 연어와농어의구별

밝기 (𝑙)

폭 (𝑤) 7.3𝑙 + 3.4𝑤 = 100

𝑙

𝑤

7.3𝑙 + 3.4𝑤 ≥ 100

7.3𝑙 + 3.4𝑤 < 100

농어

연어
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예시: 연어와농어의구별

𝑙

𝑤

7.3 × 𝑙

3.4 × 𝑤

Σ

100

연어/농
어



MULTI-LAYER 
PERCEPTRON – BACK-
PROPAGATION ALGORITHM



Artificial Neuron

𝑤𝑇𝑥 𝑔(𝑤𝑇𝑥)

Activation function (non-linear)



Artificial Neuron

• Can’t solve non-linearly-separable problems



Multi-layer Neural Network

• Hidden layer pre-activation:

• 𝐚 𝐱 = 𝐛𝟏 +𝐖𝟏𝐱

• Hidden layer activation

• 𝐡 𝐱 = 𝐠(𝐚 𝐱 )

• Output layer activation

• 𝐟 𝐱 = 𝐨(𝐛𝟐 + (𝐰𝟐)𝐓𝐡𝟏𝐱)
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Activation function 𝑔(⋅)

• Sigmoid activation function

• Squashes the neuron’s pre-activation between 0 and 1

• Always positive

• Bounded

• Strictly increasing

• Hyperbolic tangent (‘‘tanh’’) activation function

• Squashes the neuron’s pre-activation between -1 and 1

• Can be positive or negative 

• Bounded

• Strictly increasing

𝑔 𝑥 =
1

1 + exp(−𝑥)

𝑔 𝑥 = tanh 𝑥 =
exp 𝑥 − exp(−𝑥)

exp(𝑥) + exp(−𝑥)



Activation function 𝑔(⋅)

• Rectified linear activation 

function

• Bounded below by 0

• Not upper bounded

• Strictly increasing

• Tends to give neurons with 

sparse activities

𝑔 𝑎 = 𝑟𝑒𝑐𝑡𝑙𝑖𝑛 𝑎 = max 0, 𝑎



Rectified linear activation 
function
• Rectified linear units are much faster to compute than the sum 

of many logistic units.

 

𝑛=1

𝑛=∞

logistic(𝑥 + 0.5 − 𝑛) log 1 + 𝑒𝑥

Output = max(0, input)



Softmax activation function at the 
output
• For multi-class classification

• We need multiple outputs (1 output per class)

• We would like to estimate the conditional probability 𝑝(𝑦 = 𝑐|𝑥)

• We use the softmax activation function at the output

• strictly positive

• sums to one

𝑂 𝐚 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐚 =

exp 𝑎1
 𝑐 exp 𝑎𝑐
exp 𝑎2

 𝑐 exp 𝑎𝑐
⋮
⋮

exp 𝑎𝑐
 𝑐 exp 𝑎𝑐



Example (character recognition 
example)

𝑥 ∈ 0,1 10×14

𝑝(𝑐 = "0"|𝑥)

𝑝(𝑐 = "1"|𝑥)

𝑝(𝑐 = "9"|𝑥)

⋮

140 inputs

Layer 1

with 12 perceptrons

Layer 2

with 10 perceptrons

Each having 12 inputs



TRAINING OF MULTI-LAYER 
PERCEPTRON



Training: Loss function

• Square Euclidean distance (regression)

• 𝑦,  𝑦 ∈ ℜ𝑁

• 𝐿 =
1

2
 𝑦𝑖 −  𝑦𝑖

2

• Cross entropy (classification)

• 𝑦,  𝑦 ∈ 0,1 𝑁,  𝑖=1𝑦𝑖 = 1, 𝑖=1  𝑦𝑖 = 1

• 𝐿 = − 𝑦𝑖log  𝑦𝑖

Error



Forward/Backward propagation

• Chain rule

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝜂
𝑑𝐿

𝑑𝑊



Forward/Backward propagation

Forward propagation

Backward propagation

𝑊
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Compute gradient w.r.t. parameters and update parameters by using the gradients.



Why are Deep Architectures hard 
to train?
• Vanishing gradient problem in back-

propagation.

• Local Optimum (saddle points?) Issue in 

Neural Nets

• For Deep Architectures, back-propagation is 

apparently getting a local optimum (saddle 

points?) that does not generalize well



Empirical Results: Poor performance of 
Backpropagation on Deep Neural Nets [Erhan et al., 
2009]

• MNIST digit classification task; 400 trials (random seed)

• Each layer: initialize weights with random numbers

• Although 𝐿 + 1 layers is more expressive, worse error than 𝐿
layers. 


