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Conventional approach

- Image classification

> “Motocycle”
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Why is this hard?

But the camera sees this:
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Feature representation

+ Motorbikes
Raw image “Non”-Motorbikes
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Feature representation

—handlebars

3 _ Feature
J12) @I wheel representation

E.g., Does it have Handlebars? Wheels?

Input

+ Motorbikes

Raw image Non”-Motorbikes Features

Handlebars
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Example of Feature Representation

But, ... we don’t have a handlebars detector. So, researchers try to hand-
design features to capture various statistical properties of the image

Final
feature
vector

Find edges Sum up edge
at four strength in
orientations  each quadrant
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Feature representation

‘ Feature ‘ Classification

‘ Representation ' Algorithm
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MNIST EXAMPLE
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MNIST dataset

- Simple computer vision dataset

- 28x28 pixel images of handwritten digits

SO/

- 28x28 array or 784 dimensional vector
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L
Dimension Reduction - 1

- Dots are colored based on which class of digit the data point
belongs to.




Dimension Reduction - 2 (PCA)

- Filter
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L
Dimension Reduction - 2 (PCA)




L
Dimension Reduction - 2 (PCA)




D
Visualization MNIST with t-SNE

>

Visualizing MINIST with t-SNE




FEATURE EXAMPLES




Computer vision features

Ornentation Voting
N N \\ R
. < NN
2 «— Overlapping Blocks
| R
Input Image Gradient Image

NIEAE=SN 72
N A ;

Textons
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Audio features
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Natural Language Processing Features
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Coming up with features is difficult, time-
consuming, requires expert knowledge.

Pars

His father, Nick B e i . - -

' 1//_
Itstill hasn't turned up. If's why locators are now

required in all US planes,

Anaphora Part of speech

Ontologies (WordNet)



“SIMPLE” TRAINABLE
CLASSIFIERS




L
Models of pattern recognition

- Traditional Pattern Recognition
- Fixed/engineered features (or fixed kernel) + trainable classifier

Feature
Extractor




- family of methods that uses deep architectures
D e e p Le a r n I n learn high-level feature representations

Low-Level| |Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier
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Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]




LINEAR PERCEPTRON







Basic model

- The first learning machine: the Perceptron (built in 1960)

- The perceptron was a linear classifier on top of a simple feature
extractor

- The vast majority of practical applications of machine learning
used linear classifiers.

A

y = sign(WTF(X) + b)

1010e4)X3 91N}e9
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Simple Linear Perceptron
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Class (-1) o Class (+1)

- The goal: Find the best line (or hyper-plane) to separate the training
data. How to formalize it?
- In two dimensions, the equation of the line is given by:
s wix+w,y=0>b
- A better notation for n dimensions: treat each data point and the coefficients as
vectors. Then the equation is given by:

- wlx=b



L
Simple Linear Perceptron

- The Simple Linear Perceptron is a classifier as shown in the
picture
- Points that fall on the right are classified as “+1”
- Points that fall on the left are classified as “-1”
- Therefore: using the training set, find a hyperplane (line) so that
- wlx > b for positive samples
- wl'x < b for negative samples

Class (-1) 7o Class (+1)
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FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark
line could serve as a decision boundary of our classifier. Overall classification error on
the data shown is lower than if we use only one feature as in Fig. 1.3, but there will
still be some errors. From: Richard O. Duda, Peter E. Hart, and David C. Stork, Pattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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MULTI-LAYER
PERCEPTRON - BACK-
PROPAGATION ALGORITHM




Artificial Neuron

Dendrites

wTlx @ gwTx)
10,

Activation function (non-linear)



L
Artificial Neuron

- Can’t solve non-linearly-separable problems

XOR (3.’71, .513‘2)




L
Multi—-layer Neural Network

- Hidden layer pre-activation:
- a(x) = bl + Wix

- Hidden layer activation
- h(x) = g(a(x))

- Output layer activation
- f(x) = o(b%? + (w?)Thlx)




L
Activation function g(-)

- Sigmoid activation function
- Squashes the neuron’s pre-activation between 0 and 1
- Always positive
- Bounded g(x) =
- Strictly increasing

1
1+ exp(—x)

L L L | L L L L L L | L L L | L L
4 2 2 4

- Hyperbolic tangent (“‘tanh’”) activation function
- Squashes the neuron’s pre-activation between -1 and 1
- Can be positive or negative 0
- Bounded 9(x) = tanh(x) = zﬁgg ; ziig:g 0.5:
- Strictly increasing

-/05

.10 -



Activation function g(-)

- Rectified linear activation
function
- Bounded below by 0
- Not upper bounded
- Strictly increasing

- Tends to give neurons with
sparse activities

g(a) = rectlin(a) = max(0, a) S S SO S W

Y- SRR N— Ereenssisssssenns SPOPOPRSPPOH SSpSprp— S— ]
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Rectified linear activation
function

- Rectified linear units are much faster to compute than the sum
of many logistic units.

o/

n=~0o
Z logistic(x + 0.5 —n) = log(1 + e”*)
n=1 Output = max(0, input)



Softmax activation function at the
output

- For multi-class classification
- We need multiple outputs (1 output per class)
- We would like to estimate the conditional probability p(y = c|x)

- We use the softmax activation function at the output

" exp(ag) ]
Y.cexp(ac)
exp(a,)

O(a) = softmax(a) = 2c ex:p(ac)

exp(a)
Y. cexp(ac).

- strictly positive
- sums to one
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Example (character recognition

example)

' 140 inputs ‘<

x € {0’1}10><14

Layer 1

Layer 2

plc ="0"|x)
plc = "1"|)
plc ="9"[x)

with 12 perceptrons  with 10 perceptrons

Each having 12 inputs



TRAINING OF MULTI-LAYER
PERCEPTRON




Training: Loss function

X y

Y

- Square Euclidean distance (regression)
- y,9 € RN
1 ~
cL=-¥0i—)*

- Cross entropy (classification)
‘ y'j; € [Oyl]N;Zizlyi — 1;2,::15;,: — 1
- L =—2yilogy;



Forward/Backward propagation

Chain rule




Forward/Backward propagation

X
——f VY =0(W'X+Db) Y
a7
dL _ dL oY Forward propagation
dX dY 90X
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Backward propagation



F-PROP

F-PROP

F-PROP




B-PROP

B-PROP

B-PROP

Compute gradient w.r.t. parameters and update parameters by using the gradients.



Why are Deep Architectures hard

to train?

- Vanishing gradient problem in back-
propagation.

- Local Optimum (saddle points?) Issue in
Neural Nets

- For Deep Architectures, back-propagation is

apparently getting a local optimum (saddle
points?) that does not generalize well
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Empirical Results: Poor performance of
Backpropagation on Deep Neural Nets [Erhan et al.,
2009]

- MNIST digit classification task; 400 trials (random seed)
- Each layer: initialize weights with random numbers

- Although L + 1 layers is more expressive, worse error than L
layers.

test classification error (perc)

number of layers



