
전통적인접근법

Conventional approach

• Image classification

“Motocycle”

Slides from “Andrew Ng”

Why is this hard?

Slides from “Andrew Ng”

Feature representation

Slides from “Andrew Ng”

Classification

Algorithm

Feature representation

Classification

Algorithm

Slides from “Andrew Ng”

Example of Feature Representation

• But, … we don’t have a handlebars detector. So, researchers try to hand-

design features to capture various statistical properties of the image

Slides from “Andrew Ng”

Feature representation

Slides from “Andrew Ng”

Classification

Algorithm

MNIST EXAMPLE

MNIST dataset

• Simple computer vision dataset

• 28x28 pixel images of handwritten digits

• 28x28 array or 784 dimensional vector

Dimension Reduction - 1

• Dots are colored based on which class of digit the data point

belongs to.

Dimension Reduction – 2 (PCA)

• Filter

Dimension Reduction – 2 (PCA)

Dimension Reduction – 2 (PCA)

Visualization MNIST with t-SNE

FEATURE EXAMPLES

Computer vision features

Slides from “Andrew Ng”

Audio features

Natural Language Processing Features

“SIMPLE” TRAINABLE
CLASSIFIERS

• Traditional Pattern Recognition

• Fixed/engineered features (or fixed kernel) + trainable classifier

Models of pattern recognition

Deep LearningA family of methods that uses deep architectures

to learn high-level feature representations

LINEAR PERCEPTRON

뉴런: 신경망의기본단위

Basic model

• The first learning machine: the Perceptron (built in 1960)

• The perceptron was a linear classifier on top of a simple feature

extractor

• The vast majority of practical applications of machine learning

used linear classifiers.

𝑦 = sign(𝑊𝑇𝐹 𝑋 + 𝑏)

Simple Linear Perceptron

• The goal: Find the best line (or hyper-plane) to separate the training
data. How to formalize it?

• In two dimensions, the equation of the line is given by:

• 𝑤1𝑥 + 𝑤2𝑦 = 𝑏

• A better notation for n dimensions: treat each data point and the coefficients as
vectors. Then the equation is given by:

• 𝑤𝑇𝑥 = 𝑏

Class (+1)Class (-1)

Simple Linear Perceptron

• The Simple Linear Perceptron is a classifier as shown in the

picture

• Points that fall on the right are classified as “+1”

• Points that fall on the left are classified as “-1”

• Therefore: using the training set, find a hyperplane (line) so that

• 𝑤𝑇𝑥 > 𝑏 for positive samples

• 𝑤𝑇𝑥 < 𝑏 for negative samples

Class (+1)Class (-1)

예시: 연어와농어의구별

예시: 연어와농어의구별

밝기 (𝑙)

폭 (𝑤) 7.3𝑙 + 3.4𝑤 = 100

𝑙

𝑤

7.3𝑙 + 3.4𝑤 ≥ 100

7.3𝑙 + 3.4𝑤 < 100

농어

연어

4 2 2 4

0.2

0.4

0.6

0.8

1.0

예시: 연어와농어의구별

𝑙

𝑤

7.3 × 𝑙

3.4 × 𝑤

Σ

100

연어/농
어

MULTI-LAYER
PERCEPTRON – BACK-
PROPAGATION ALGORITHM

Artificial Neuron

𝑤𝑇𝑥 𝑔(𝑤𝑇𝑥)

Activation function (non-linear)

Artificial Neuron

• Can’t solve non-linearly-separable problems

Multi-layer Neural Network

• Hidden layer pre-activation:

• 𝐚 𝐱 = 𝐛𝟏 +𝐖𝟏𝐱

• Hidden layer activation

• 𝐡 𝐱 = 𝐠(𝐚 𝐱)

• Output layer activation

• 𝐟 𝐱 = 𝐨(𝐛𝟐 + (𝐰𝟐)𝐓𝐡𝟏𝐱)

4 2 2 4

1.0

0.5

0.5

1.0

4 2 2 4

0.2

0.4

0.6

0.8

1.0

Activation function 𝑔(⋅)

• Sigmoid activation function

• Squashes the neuron’s pre-activation between 0 and 1

• Always positive

• Bounded

• Strictly increasing

• Hyperbolic tangent (‘‘tanh’’) activation function

• Squashes the neuron’s pre-activation between -1 and 1

• Can be positive or negative

• Bounded

• Strictly increasing

𝑔 𝑥 =
1

1 + exp(−𝑥)

𝑔 𝑥 = tanh 𝑥 =
exp 𝑥 − exp(−𝑥)

exp(𝑥) + exp(−𝑥)

Activation function 𝑔(⋅)

• Rectified linear activation

function

• Bounded below by 0

• Not upper bounded

• Strictly increasing

• Tends to give neurons with

sparse activities

𝑔 𝑎 = 𝑟𝑒𝑐𝑡𝑙𝑖𝑛 𝑎 = max 0, 𝑎

Rectified linear activation
function
• Rectified linear units are much faster to compute than the sum

of many logistic units.

𝑛=1

𝑛=∞

logistic(𝑥 + 0.5 − 𝑛) log 1 + 𝑒𝑥

Output = max(0, input)

Softmax activation function at the
output
• For multi-class classification

• We need multiple outputs (1 output per class)

• We would like to estimate the conditional probability 𝑝(𝑦 = 𝑐|𝑥)

• We use the softmax activation function at the output

• strictly positive

• sums to one

𝑂 𝐚 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐚 =

exp 𝑎1
 𝑐 exp 𝑎𝑐
exp 𝑎2

 𝑐 exp 𝑎𝑐
⋮
⋮

exp 𝑎𝑐
 𝑐 exp 𝑎𝑐

Example (character recognition
example)

𝑥 ∈ 0,1 10×14

𝑝(𝑐 = "0"|𝑥)

𝑝(𝑐 = "1"|𝑥)

𝑝(𝑐 = "9"|𝑥)

⋮

140 inputs

Layer 1

with 12 perceptrons

Layer 2

with 10 perceptrons

Each having 12 inputs

TRAINING OF MULTI-LAYER
PERCEPTRON

Training: Loss function

• Square Euclidean distance (regression)

• 𝑦, 𝑦 ∈ ℜ𝑁

• 𝐿 =
1

2
 𝑦𝑖 − 𝑦𝑖

2

• Cross entropy (classification)

• 𝑦, 𝑦 ∈ 0,1 𝑁, 𝑖=1𝑦𝑖 = 1, 𝑖=1 𝑦𝑖 = 1

• 𝐿 = − 𝑦𝑖log 𝑦𝑖

Error

Forward/Backward propagation

• Chain rule

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝜂
𝑑𝐿

𝑑𝑊

Forward/Backward propagation

Forward propagation

Backward propagation

𝑊

𝑌

𝜕𝐿

𝜕𝑌

𝜕𝐿

𝜕𝑋

𝜕𝐿

𝜕𝑊
=
𝜕𝐿

𝜕𝑌

𝜕𝑌

𝜕𝑊

𝑌 = 𝜎(𝑊𝑇𝑋 + 𝑏)

𝜕𝑌

𝜕𝑋

𝜕𝑌

𝜕𝑊

𝑑𝐿

𝑑𝑋
=
𝑑𝐿

𝑑𝑌
⋅
𝜕𝑌

𝜕𝑋

Compute gradient w.r.t. parameters and update parameters by using the gradients.

Why are Deep Architectures hard
to train?
• Vanishing gradient problem in back-

propagation.

• Local Optimum (saddle points?) Issue in

Neural Nets

• For Deep Architectures, back-propagation is

apparently getting a local optimum (saddle

points?) that does not generalize well

Empirical Results: Poor performance of
Backpropagation on Deep Neural Nets [Erhan et al.,
2009]

• MNIST digit classification task; 400 trials (random seed)

• Each layer: initialize weights with random numbers

• Although 𝐿 + 1 layers is more expressive, worse error than 𝐿
layers.

